【題目】甲、乙兩車從A地將一批物品勻速運(yùn)往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1h到達(dá)B地.如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時(shí)間t(h)的關(guān)系,a表示A、B兩地之間的距離.請(qǐng)結(jié)合圖中的信息解決如下問題:
(1)分別計(jì)算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回,請(qǐng)問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時(shí)回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時(shí)間t(h)的函數(shù)圖象.

【答案】
(1)解:甲的速度為60÷1.5=40(千米/小時(shí)),乙的速度為60千米/小時(shí).

求a的方法如下:

方法1:由題意, = ﹣1﹣0.5,

解得:a=180;

方法2:設(shè)甲到達(dá)B地的時(shí)間為t,則乙所用時(shí)間為:t﹣1﹣0.5,由路程相等得,

40t=60(t﹣1﹣0.5),

解得:t=4.5,

a=40t=40×4.5=180;

方法3:由題意知,M(0.5,0),

可求得線段OP、MN表示的函數(shù)關(guān)系式分別為:S=40t,S=60t﹣30,

設(shè)N(t,a),P(t+1,a),代入函數(shù)關(guān)系式,

解得:


(2)解:方法1:設(shè)甲返回的速度為xkm/h,則:

﹣1= ,

解得:x=90,

經(jīng)檢驗(yàn)得出:x=90是方程的根且符合題意,

故甲返回的速度為90km/h,

方法2:設(shè)甲返回的速度為xkm/h,則 ×2+0.5= + ,

解得:x=90,

經(jīng)檢驗(yàn)得出:x=90是方程的根且符合題意,

故甲返回的速度為90km/h,

方法3,:如圖,線段PE、NE分別表示甲、乙兩車返回時(shí)距離A地的距離S(千米)與時(shí)間t(小時(shí))的關(guān)系,

點(diǎn)E的橫坐標(biāo)為: ×2+0.5=6.5,若甲、乙兩車同時(shí)返回A地,則甲返回時(shí)需用時(shí)間為:

6.5﹣ =2(小時(shí)),

故甲返回的速度為90km/h,如圖所示.


【解析】(1)利用圖象上D點(diǎn)的坐標(biāo)得出甲的速度為40千米/小時(shí),乙的速度為60千米/小時(shí),再利用兩車行駛時(shí)間列出等量關(guān)系求出a即可;(2)首先設(shè)甲返回的速度為xkm/h,則利用返回時(shí)兩人所用時(shí)間相差1小時(shí)得出 ﹣1= ,進(jìn)而求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問題:

頻數(shù)

頻率

第一組(0≤x<15)

3

0.15

第二組(15≤x<30)

6

a

第三組(30≤x<45)

7

0.35

第四組(45≤x<60)

b

0.20


(1)頻數(shù)分布表中a= , b= , 并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)為合理安排體育活動(dòng),在全校喜歡乒乓球、排球、羽毛球、足球、籃球五種球類運(yùn)動(dòng)的1000名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,了解學(xué)生最喜歡的一種球類運(yùn)動(dòng),每人只能在這五種球類運(yùn)動(dòng)中選擇一種.調(diào)查結(jié)果統(tǒng)計(jì)如下:

球類名稱

乒乓球

排球

羽毛球

足球

籃球

人數(shù)

a

12

36

18

b


解答下列問題:
(1)本次調(diào)查中的樣本容量是
(2)a= , b=;
(3)試估計(jì)上述1000名學(xué)生中最喜歡羽毛球運(yùn)動(dòng)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是ABCD的邊CD上一點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,且AD=4, = ,則CF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB的長(zhǎng)為2,C為AB上一個(gè)動(dòng)點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個(gè)等腰直角三角形△ACD和△BCE,那么DE長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)|﹣4|×( ﹣1)0﹣2
(2)解不等式:3x>2(x+1)﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案