【題目】將一個(gè)直角三角形紙片ABO放置在平面直角坐標(biāo)系中,點(diǎn)A(,0),B(0,1),O(0,0).
(1)點(diǎn)P為邊OA上一點(diǎn)(點(diǎn)P不與A,O重合),沿BP將紙片折疊得A的對(duì)應(yīng)點(diǎn)A′.邊BA′與x軸交于點(diǎn)Q.
①如圖1,當(dāng)點(diǎn)A′剛好落在y軸上時(shí),求點(diǎn)A′的坐標(biāo).
②如圖2,當(dāng)A′P⊥OA,若線(xiàn)段OQ在x軸上移動(dòng)得到線(xiàn)段O′Q′(線(xiàn)段OQ平移時(shí)A′不動(dòng)),當(dāng)△A′O′Q′周長(zhǎng)最小時(shí),求OO′的長(zhǎng)度.
(2)如圖3,若點(diǎn)P為邊AB上一點(diǎn)(點(diǎn)P不與A,B重合),沿OP將紙片折疊得A的對(duì)應(yīng)點(diǎn)A″,當(dāng)∠BPA″=30°時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)①A'(0,﹣1);②1﹣;(2)P(,).
【解析】
(1)①先利用勾股定理求出,利用折疊求出,再利用線(xiàn)段的和差求出即可得出結(jié)論;
②先由折疊求出,進(jìn)而求出,即可求出,求出點(diǎn)的坐標(biāo),從而求出直線(xiàn)的解析式,求出OQ的長(zhǎng)度,最后用等腰三角形的三線(xiàn)合一即可得出結(jié)論;
(2)先求出,再構(gòu)造直角三角形,建立方程即可求出結(jié)論.
(1)
,由勾股定理得
①由折疊知,
;
②
由折疊知,
∴直線(xiàn)的解析式為
令,得,
∵線(xiàn)段OQ在x軸上移動(dòng)得到線(xiàn)段(線(xiàn)段OQ平移時(shí)不動(dòng)),要周長(zhǎng)最小
則是的垂直平分線(xiàn),P是垂足,
;
(2)如圖,在中,
由折疊知,
過(guò)點(diǎn)P作于G
在中,
設(shè)
在中,
在中,
又
解得
故點(diǎn)P的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:甲、乙兩車(chē)分別從相距300km的A,B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)圖象.
(1)求甲車(chē)離出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)關(guān)系式,并標(biāo)明自變量的取值范圍;
(2)若已知乙車(chē)行駛的速度是40千米/小時(shí),求出發(fā)后多長(zhǎng)時(shí)間,兩車(chē)離各自出發(fā)地的距離相等;
(3)它們?cè)谛旭傔^(guò)程中有幾次相遇.并求出每次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱(chēng)為“接近度”.在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個(gè)內(nèi)角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個(gè)內(nèi)角為,則該菱形的“接近度”等于 ;
②當(dāng)菱形的“接近度”等于 時(shí),菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長(zhǎng)分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認(rèn)為這種說(shuō)法是否合理?若不合理,給出矩形的“接近度”一個(gè)合理定義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線(xiàn)ON上,點(diǎn)B1,B2,B3,…在射線(xiàn)OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長(zhǎng)_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為( 。
A. (,-1) B. (2,﹣1) C. (1,-) D. (﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,點(diǎn)A、點(diǎn)B在直線(xiàn)l異側(cè),以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交直線(xiàn)l于C、D兩點(diǎn).分別以C、D為圓心,AB長(zhǎng)為半徑作弧,兩弧在l下方交于點(diǎn)E,連結(jié)AE.
(1)根據(jù)題意,利用直尺和圓規(guī)補(bǔ)全圖形;
(2)證明:l垂直平分AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn).
(1)求證:△ABD是等邊三角形;
(2)求證:BE=AF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com