(2000•寧波)如圖,過⊙O外一點A向⊙O引割線AEB,ADC,DF∥BC,交AB于F.若CE過圓心O,D是AC中點.
(1)求證:DF是⊙O的切線;
(2)若FE,F(xiàn)B的長是方程x2-mx+b2=0(b>0)的兩個根,且△DEF與△CBE相似.
①試用m的代數(shù)式表示b;
②代數(shù)式的值達到最小時,求BC的長.

【答案】分析:(1)要證DF是⊙O的切線,只需證明FD⊥OD即可.
(2)根據(jù)相似三角形的性質(zhì)及根與系數(shù)的關(guān)系,即可得到所求的代數(shù)式;
(3)將b=m代入代數(shù)式可得:m2-12m+7,當它有最小值時,m=-=.因為△CEB與△CBD全等,可推出EC=2EB,利用勾股定理可得CB的式子,再分別將m的值代入即可求得CB的值.
解答:(1)證明:∵CE過圓心O,
∴CB⊥AB;
∵FD∥BC,
∴FD⊥AB;
∵CE過圓心O,D是AC的中點,
∴OD∥AB;
∴FD⊥OD;
∴DF是圓O的切線.

(2)解:∵△DEF∽△CBE,
;
=,BE=BF-EF,
=,
∴BF=3EF;
∵FE+FB=m,F(xiàn)E•FB=b2,
∴EF=,BF=;
=b2
∴b=m(b>0).

(3)解:將b=m代入代數(shù)式得:m2-6m+7,
當它有最小值時,m==;
∵△CEB≌△CBD,
∴CB=CD;
∵CD=AC,
∴CB=AC,
∴∠A=30°,
∴∠ECB=∠A=30°,
∴EC=2EB;
∴CB=;
∴CB=BE=m;
∵m=,
∴BC=2.
點評:此題考查了圓的切線的判定、相似三角形的性質(zhì)、全等三角形的性質(zhì)及勾股定理等知識.要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•寧波)如圖,過⊙O外一點A向⊙O引割線AEB,ADC,DF∥BC,交AB于F.若CE過圓心O,D是AC中點.
(1)求證:DF是⊙O的切線;
(2)若FE,F(xiàn)B的長是方程x2-mx+b2=0(b>0)的兩個根,且△DEF與△CBE相似.
①試用m的代數(shù)式表示b;
②代數(shù)式的值達到最小時,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年浙江省寧波市中考數(shù)學試卷(解析版) 題型:解答題

(2000•寧波)如圖,已知△ABC,用直尺和圓規(guī)作△ABC的外接圓.(要求保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源:2000年浙江省寧波市中考數(shù)學試卷(解析版) 題型:選擇題

(2000•寧波)如圖,把菱形ABCD沿對角線AC的方向移動到菱形A′B′C′D′的位置,它們的重疊部分(圖中陰影部分)的面積是菱形ABCD面積的,若AC=,則菱形移動的距離AA′是( )

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年浙江省寧波市中考數(shù)學試卷(解析版) 題型:選擇題

(2000•寧波)如圖,直線AB,CD被直線l所截,若∠1=∠3≠90°,則( )

A.∠2=∠3
B.∠2=∠4
C.∠1=∠4
D.∠3=∠4

查看答案和解析>>

科目:初中數(shù)學 來源:2000年浙江省寧波市中考數(shù)學試卷(解析版) 題型:選擇題

(2000•寧波)如圖,在⊙O中,∠BOC=100°,點A在⊙O上,則∠BAC的度數(shù)是( )

A.100°
B.80°
C.60°
D.50°

查看答案和解析>>

同步練習冊答案