如圖,在平面直角坐標系中,的長是關(guān)于的一元二次方程的兩個根,且
(1)求的值.
(2)若軸上的點,且求經(jīng)過、兩點的直線的解析式,并判斷是否相似?
(3)若點在平面直角坐標系內(nèi),則在直線上是否存在點使以、、為頂點的四邊形為菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
解:(1)解


中,由勾股定理有

(2)∵點軸上,



由已知可知D(6,4)
設(shè)時有
解得

同理時,
中,
中,


(3)滿足條件的點有四個
(1)解一元二次方程求出OA,OB的長度,再利用勾股定理求出AB的長度,再代入計算即可得到的值。
(2)先根據(jù)三角形的面積求出點E的坐標,并根據(jù)平行四邊形的對邊相等的性質(zhì)求出點D的坐標,然后利用待定系數(shù)法求解直線的解析式;分別求出兩三角形夾直角的兩對應邊的比,如果相等,則兩三角形相似,否則不相似;
(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對角線的情況分別進行求解計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在正方形ABCD中,對角線AC,BD交于點O,點P在線段BC上(不含點B),∠BPE=∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1) 當點P與點C重合時(如圖①).求證:△BOG≌△POE;(4分)
(2)通過觀察、測量、猜想:=   ,并結(jié)合圖②證明你的猜想;(5分)
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中有兩點,以原點為位似中心,相似比為1∶3.把線段縮小,則過點對應點的反比例函數(shù)的解析式為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點將線段分成兩部分,如果,那么稱點為線段的黃金分割點.
某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個面積為的圖形分成兩部分,這兩部分的面積分別為,如果,那么稱直線為該圖形的黃金分割線.

(1)研究小組猜想:在中,若點邊上的黃金分割點(如圖2),則直線的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發(fā)現(xiàn):過點任作一條直線交于點,再過點作直線,交于點,連接(如圖3),則直線也是的黃金分割線.
請你說明理由.
(4)如圖4,點的邊的黃金分割點,過點,交于點,顯然直線的黃金分割線.請你畫一條的黃金分割線,使它不經(jīng)過各邊黃金分割點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,一般書本的紙張是在原紙張多次對開得到的.矩形沿對開后,再把矩形沿對開,依此類推.若各種開本的矩形都相似,那么等于( 。.
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知三個邊長分別為2、3、5的正方形如圖排列,則圖中陰影部分面積為     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標。
(2)求當t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標.
(3)當t=2時,在坐標平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知梯形中,,=4,點在邊上,

(1)若,且,求的面積;
(2)若∠=∠,求邊的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小康利用下面的方法測出月球與地球的距離:如圖所示,在月圓時,把一枚五分的硬幣(直徑約為2.4cm)放在離眼睛點O約2.6米的AB處,正好把月亮遮住. 已知月球的直徑約為3500km,那么月球與地球的距離約為____________________(結(jié)果保留兩個有效數(shù)字).  
                

查看答案和解析>>

同步練習冊答案