【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(﹣1,0),(1,﹣2),當(dāng)y隨x的增大而增大時,x的取值范圍是

【答案】x>
【解析】解:把(﹣1,0),(1,﹣2)代入二次函數(shù)y=x2+bx+c中,得 ,
解得
,
那么二次函數(shù)的解析式是y=x2﹣x﹣2.
函數(shù)的對稱軸是:x=
因而當(dāng)y隨x的增大而增大時,x的取值范圍是:x>
所以答案是:x>
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)m,n是正實數(shù),且滿足m+n=mn時,就稱點P(m, )為“完美點”,已知點A(0,5)與點M都在直線y=-x+b上,點B,C是“完美點”,且點B在線段AM上,若MC= ,AM=4 ,求△MBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前“自駕游”已成為人們出游的重要方式.“五一”節(jié),林老師駕轎車從舟山出發(fā),上高速公路途經(jīng)舟山跨海大橋和杭州灣跨海大橋到嘉興下高速,其間用了4.5小時;返回時平均速度提高了10千米/小時,比去時少用了半小時回到舟山.
(1)求舟山與嘉興兩地間的高速公路路程;
(2)兩座跨海大橋的長度及過橋費見下表:

大橋名稱

舟山跨海大橋

杭州灣跨海大橋

大橋長度

48千米

36千米

過橋費

100元

80元

我省交通部門規(guī)定:轎車的高速公路通行費y(元)的計算方法為:y=ax+b+5,其中a(元/千米)為高速公路里程費,x(千米)為高速公路里程(不包括跨海大橋長),b(元)為跨海大橋過橋費.若林老師從舟山到嘉興所花的高速公路通行費為295.4元,求轎車的高速公路里程費a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2.
(1)求OE和CD的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個圖形一共有1個平行四邊形,第②個圖形一共有5個平行四邊形,第③個圖形一共有11個平行四邊形,……,則第⑥個圖形中平行四邊形的個數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長與面積.

查看答案和解析>>

同步練習(xí)冊答案