5、如圖,有一塊直角三角形紙片,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,則點C與斜邊AB的中點E正好重合,且BD=8cm,則AD的長為( 。
分析:主要根據(jù)根據(jù)折疊前后角和邊相等找到相等的邊之間的關(guān)系,即可選出.
解答:解:根據(jù)翻折變換的特點可知,∠AED=90°,
又∵E是斜邊AB的中點,
∴AD=BD=8cm.
故選C.
點評:本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿著直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD的長為
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,有一塊直角三角形紙片,∠C=90°,AC=4cm,BC=3cm,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則CD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角三角形紙片沿直線AD折疊,使點C恰好落在斜邊AB上點E處.
(1)求AB的長;
(2)直接寫出AE、BE的長及∠BED的度數(shù);
(3)求CD的長.

查看答案和解析>>

同步練習冊答案