作業(yè)寶已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+數(shù)學公式∠3=90°,∠1=∠2=∠3,下列結論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結論個數(shù)有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
C
分析:可根據(jù)證△ABF≌△△ADF推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°-∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.
解答:作AF平分∠BAD,
∵∠BAD=∠3,∠ABD+∠3=90°,
∴∠BAF=∠3=∠DAF,
∴∠ABF+∠BAF=90°
∴∠AFB=∠AFD=90°,
在△BAF和△DAF中

∴△ABF≌△△ADF(ASA),
∴AB=AD,∴①正確;
∵∠BAD=∠2=∠3,
∴點A、B、E、C在同一個圓上,
∴∠BAE=∠4=∠3,∠,ABC=∠6,
∴BE=CE,
∵∠5=∠ADB=∠ABD,∠BAE=∠4,
∴∠5=∠6,
∴CE=CD,
即CD=CE=BE,∴③正確;
∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°-∠2.
∴∠ACE=180°-∠6-∠2=90°-∠2,
∴∠ACE=∠6,
∴AE=CE,∴②正確
∵∠5=∠2+∠7=90°-∠2,
∴∠7=90°-∠2,
∵∠BAD=∠4=∠2,
∴∠4≠∠7,∴④錯誤;
故選C.
點評:本題考查了等腰三角形的判定,四點共圓,圓周角定理,三角形的內(nèi)角和定理的應用,主要考查學生的推理能力,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案