【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.求證:
(1)D是BC的中點(diǎn);
(2)△BEC∽△ADC;
(3)BC2=2AB·CE.
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析
【解析】試題分析:(1)由AB是直徑,圓周角定理可得∠ADB=90°,即AD⊥BC,再根據(jù)等腰三角形的性質(zhì)即可證得;
(2)欲證△BEC∽△ADC,通過觀察發(fā)現(xiàn)兩個(gè)三角形已經(jīng)具備一組角對(duì)應(yīng)相等,即∠AEB=∠ADC=90°,再根據(jù)公共角即可證得;
(3)由△BEC∽△ADC可證CDBC=ACCE,又D是BC的中點(diǎn),AB=AC,即可證BC2=2ABCE.
證明:(1)∵AB是直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴D是BC的中點(diǎn);
(2)∵AB是直徑,
∴AD⊥BC,BE⊥AC,
∴∠ADC=∠BEC=90°,
又∵∠C=∠C,
∴△BEC∽△ADC;
(3)∵△BEC∽△ADC,
∴=,
∴BCCD=ACCE,
∵AB=AC,AD⊥BC,
∴CD=BC,
∴BCBC=ABCE,
即BC2=2ABCE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日,北京市的最低氣溫是-11℃,嘉興市的最低氣溫是-1℃,則這一天北京的最低氣溫比嘉興的最低氣溫低( )
A.-12℃
B.-10℃
C.10℃
D.12℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①對(duì)頂角相等;②同位角相等;③若兩個(gè)角不相等,則這兩個(gè)角一定不是對(duì)頂角;④若兩個(gè)角不相等,則這兩個(gè)角一定不是同位角.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),以為邊在的下方作等邊三角形,連接.
(1)在運(yùn)動(dòng)的過程中, 與有何數(shù)量關(guān)系?請(qǐng)說明理由.
(2)當(dāng)時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法①AD是∠BAC的平分線;②∠ADC=60°③點(diǎn)D在AB的中垂線上;正確的個(gè)數(shù)是 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校規(guī)定:學(xué)生的數(shù)學(xué)學(xué)期綜合成績(jī)是由平時(shí)、期中和期末三項(xiàng)成績(jī)按3:3:4的比例計(jì)算所得.若某同學(xué)本學(xué)期數(shù)學(xué)的平時(shí)、期中和期末成績(jī)分別是90分,90分和85分,則他本學(xué)期數(shù)學(xué)學(xué)期綜合成績(jī)是 分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列所給出坐標(biāo)的點(diǎn)中,在第二象限的是( )
A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com