已知⊙O1與⊙O2外切,它們的半徑分別為2和3,則圓心距O1O2的長是( )
A.O1O2=1
B.O1O2=5
C.1<O1O2<5
D.O1O2>5
【答案】分析:根據(jù)兩圓的位置關系可以得到兩圓半徑和圓心距之間的數(shù)量關系.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內切,則d=R-r;內含,則d<R-r.
解答:解:根據(jù)題意,得:O1O2=R+r=5.故選B.
點評:本題考查了由兩圓位置關系來判斷半徑和圓心距之間數(shù)量關系的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、已知⊙O1與⊙O2外切,它們的半徑分別為4cm、3cm,則圓心距O1O2=
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2外切于A,AB是⊙O2的直徑,BC切⊙O1于C,若∠B=30°,BC=6
3

求:(1)∠BCA的度數(shù);(2)⊙O1與⊙O2的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2外切,⊙O2與⊙O3外切,三個圓都與直線a、直線b相切,其中A1、A2、A3分別為切點⊙O1的半徑為3,⊙O2的半徑為4,則⊙O3的半徑為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知⊙O1與⊙O2外切,⊙O1的半徑R=5cm,⊙O2的半徑r=1cm,則⊙O1與⊙O2的圓心距是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)二模)已知⊙O1與⊙O2外切,圓心距為8cm,且⊙O1的半徑為5cm,則⊙O2的半徑為
3
3
厘米.

查看答案和解析>>

同步練習冊答案