9.不等式-2a<6的解是a>-3.

分析 不等式的兩邊同時(shí)除以-2即可得出結(jié)論.

解答 解:不等式的兩邊同時(shí)除以-2得,a>-3.
故答案為:a>-3.

點(diǎn)評 本題考查的是解一元一次不等式,熟知不等式的基本性質(zhì)是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的F處,如果AB:AD=3:4,則sin∠CEF=$\frac{3}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.在Rt△ABC中,∠ABD=90°,AE=BD,AB=CD,連接CE、AD兩線交于P,則∠CPD=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,△ABC中,∠B=∠ACB,點(diǎn)D在AC的延長線上,點(diǎn)E在AB上,且BE=CD,DE交BC于G,EF⊥BC于F,求證:BC=2FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-5,0),B(1,0),直線l:y=$\frac{3}{4}$x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)若點(diǎn)P是x軸上方拋物線上對稱軸左側(cè)一動(dòng)點(diǎn),過點(diǎn)P分別作PE∥x軸交拋物線于點(diǎn)E,作PF⊥l交于點(diǎn)F,若PF=EP,求點(diǎn)P的坐標(biāo);
(3)如圖,拋物線頂點(diǎn)為G點(diǎn),連接CG、DG,設(shè)拋物線對稱軸與直線CD、x軸的交點(diǎn)為N、Q,以AQ、NQ為邊作矩形AQNM.現(xiàn)將矩形AQNM沿直線GQ平移得到矩形A′Q′N′M′,設(shè)矩形A′Q′N′M′與△CDG的重疊部分面積為T,當(dāng)3S△N'CD=5S△N'CO時(shí),求T的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.先化簡再求值:5(3a2b-ab2)-4(-ab2+3a2b),其中|a$-\frac{1}{2}$|+(b$+\frac{1}{3}$)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如果|x|=$\sqrt{5}$,則x等于(  )
A.±$\sqrt{5}$B.$\sqrt{5}$C.-$\sqrt{5}$D.±2.236

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.現(xiàn)有10件外觀相同的產(chǎn)品,其中9件是正品,1件是次品,現(xiàn)從中隨機(jī)取出一件為次品的概率是$\frac{1}{10}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.在下列式子中:①$\frac{a}{3}$②$\frac{5}{m}$③$\frac{{a}^{2}-^{2}}{a-b}$④$\frac{1}{2}(m-n)$⑤$\frac{x}{π+3}$⑥$\frac{{x}^{2}}{x}$⑦$\frac{1}{2-y}$,分式有(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊答案