精英家教網 > 初中數學 > 題目詳情
為了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,則2s=2+22+23+24…+22013,因此2s-s=22013-1,所以1+2+22+23+…+22012=22013-1.仿照以上推理,計算1+5+52+53+…+52013的值.
分析:仔細閱讀題目中示例,找出其中規(guī)律,求解本題.
解答:解:根據題中的規(guī)律,設S=1+5+52+53+…+52013
則5S=5+52+53+…+52013+52014,
所以5S-S=4S=52014-1,
所以S=
52014-1
4
點評:主要考查了學生的分析、總結、歸納能力,規(guī)律型的習題一般是從所給的數據和運算方法進行分析,從特殊值的規(guī)律上總結出一般性的規(guī)律.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

閱讀理解并解答:
為了求1+2+22+23+24+…+22009的值,可令S=1+2+22+23+24+…+22009,
則2S=2+22+23+24+…+22009+22010,因此2S-S=(2+22+23+…+22009+22010)-(1+2+22+23+…+22009)=22010-1.
所以:S=22010-1.即1+2+22+23+24+…+22009=22010-1.
請依照此法,求:1+4+42+43+44+…+42010的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

為了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,則2S=2+22+23+24+…+22009+22010,因此2S-S=22010+1,所以1+22+23+…+22008=22010+1仿照以上推理計算出1+5+52+53+…+52009的值是
52010-1
4
52010-1
4

查看答案和解析>>

科目:初中數學 來源: 題型:

為了求1+2+22+…+22009的值,可令S=1+2+22+…+22009,則2S=2+22+…+22010,因此2S-S=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理計算出1+3-1+3-2+…+3-2009的值是
3-3-2009
2
3-3-2009
2

查看答案和解析>>

科目:初中數學 來源: 題型:

為了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,則2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理計算出1+7+72+73+…72010的值(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀下列材料:
為了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
則 2S=2+22+23+…+22012②,
②-①得  2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,請計算:1+4+42+43…+42011

查看答案和解析>>

同步練習冊答案