【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( 。

A.∠E=2∠K
B.BC=2HI
C.六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng)
D.S六邊形ABCDEF=2S六邊形GHIJKL

【答案】B
【解析】

根據(jù)相似多邊形的性質(zhì)對(duì)各選項(xiàng)進(jìn)行逐一分析即可.

A、∵六邊形ABCDEF∽六邊形GHIJKL,∴∠E=∠K,故本選項(xiàng)錯(cuò)誤;
B、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴BC=2HI,故本選項(xiàng)正確;
C、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng)×2,故本選項(xiàng)錯(cuò)誤;
D、∵六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,∴S六邊形ABCDEF=4S六邊形GHIJKL , 故本選項(xiàng)錯(cuò)誤.
故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:m,n是兩個(gè)連續(xù)自然數(shù)(m<n),且q=mn.設(shè)p=+,則p( ).
A.總是奇數(shù)
B.總是偶數(shù)
C.有時(shí)是奇數(shù),有時(shí)是偶數(shù)
D.有時(shí)是有理數(shù),有時(shí)是無理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知△ABC,任取一點(diǎn)O,連AO,BO,CO,并取它們的中點(diǎn)D,E,F(xiàn),得△DEF,則下列說法正確的個(gè)數(shù)是(  )
①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長(zhǎng)比為1:2;④△ABC與△DEF的面積比為4:1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動(dòng)點(diǎn),若△PAD與△PBC是相似三角形,求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長(zhǎng)線于E , 則圖中一定相似的三角形是(  )
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:25)能喝到不小于70℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的(  )

A.7:00
B.7:10
C.7:25
D.7:35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接杭州G20峰會(huì),某校開展了設(shè)計(jì)“YJG20”圖標(biāo)的活動(dòng),下列圖形中及時(shí)軸對(duì)稱圖形又是中心對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長(zhǎng)20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.

查看答案和解析>>

同步練習(xí)冊(cè)答案