(2010•宜昌)拋物線y=x2+2x+1的頂點(diǎn)坐標(biāo)是( )
A.(0,-1)
B.(-1,1)
C.(-1,0)
D.(1,0)
【答案】分析:用配方法將拋物線的一般式轉(zhuǎn)化為頂點(diǎn)式,可確定頂點(diǎn)坐標(biāo).
解答:解:∵y=x2+2x+1=(x+1)2,
∴拋物線頂點(diǎn)坐標(biāo)為(-1,0),
故選C.
點(diǎn)評(píng):考查將解析式化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,頂點(diǎn)坐標(biāo)是(h,k),對(duì)稱軸是x=h.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時(shí)經(jīng)過(guò)兩個(gè)不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無(wú)論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過(guò)點(diǎn)P,請(qǐng)確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時(shí)經(jīng)過(guò)兩個(gè)不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無(wú)論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過(guò)點(diǎn)P,請(qǐng)確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時(shí)經(jīng)過(guò)兩個(gè)不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無(wú)論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過(guò)點(diǎn)P,請(qǐng)確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•宜昌)拋物線y=x2+2x+1的頂點(diǎn)坐標(biāo)是( )
A.(0,-1)
B.(-1,1)
C.(-1,0)
D.(1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案