如圖,在△ABC中,AB=AC,O在AB上,以O為圓心,OB為半徑的圓與AC相切于點F,交BC于點D,交AB于點G,過D作DE⊥AC,垂足為E.
(1)DE與⊙O有什么位置關(guān)系,請寫出你的結(jié)論并證明;
(2)若⊙O的半徑長為3,AF=4,求CE的長.

【答案】分析:由已知可證得OD⊥DE,OD為圓的半徑,所以DE與⊙O相切;連接OD,OF,由已知可得四邊形ODEF為矩形,從而得到EF的長,再利用勾股定理求得AO的長,從而可求得AC的長,此時CE就不難求得了.
解答:解:(1)DE與⊙O相切;
理由如下:
連接OD,
∵OB=OD,
∴∠ABC=∠ODB;
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC;
∵DE⊥AC,
∴OD⊥DE,
∴DE與⊙O相切.

(2)連接OD,OF;
∵DE,AF是⊙O的切線,
∴OF⊥AC,OD⊥DE,
又∵DE⊥AC,
∴四邊形ODEF為矩形,
∴EF=OD=3;
在Rt△OFA中,AO2=OF2+AF2,
,
∴AC=AB=AO+BO=8,CE=AC-AF-EF=8-4-3=1,
∴CE=1.
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案