【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種工具,每天所得的銷售利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.
請(qǐng)比較哪種方案的最大利潤更高,并說明理由.
【答案】(1)w=-10x2+700x-10000;
(2)銷售單價(jià)為35元時(shí),每天銷售利潤最大,最大利潤為2250元;
(3)方案A的最大利潤更高,理由見解析.
【解析】試題分析:(1)根據(jù)利潤=(銷售單價(jià)-進(jìn)價(jià))×銷售量,列出函數(shù)關(guān)系式即可;
(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運(yùn)用配方法求最大值;
(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進(jìn)行比較.
試題解析:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.
(2)w=-10x2+700x-10000=-10(x-35)2+2250.
所以,當(dāng)x=35時(shí),w有最大值2250.
即銷售單價(jià)為35元時(shí),該文具每天的銷售利潤最大.
(3)方案A:由題可得20<x≤30,
因?yàn)?/span>a=-10<0,對(duì)稱軸為x=35,
拋物線開口向下,在對(duì)稱軸左側(cè),w隨x的增大而增大,
所以,當(dāng)x=30時(shí),w取最大值為2000元.
方案B:由題意得,解得: ,
在對(duì)稱軸右側(cè),w隨x的增大而減小,
所以,當(dāng)x=45時(shí),w取最大值為1250元.
因?yàn)?000元>1250元,
所以選擇方案A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A(-5,0),B(-1,4)
(1)求直線AB的表達(dá)式;
(2)求直線CE:y=-2x-4與直線AB及y軸圍成圖形的面積;
(3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點(diǎn),AC與DE交于P點(diǎn),以直線BC為x軸,點(diǎn)E為原點(diǎn)建立直角坐標(biāo)系.
(1)求△ABC與△DEF的頂點(diǎn)坐標(biāo);
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC與△DEF中,給出下列六個(gè)條件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F,以其中三個(gè)條件為已知,不能判斷△ABC與△DEF全等的是( )
A. (1)(2)(3)B. (1)(2)(5)
C. (1)(4)(6)D. (2)(3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由點(diǎn)C向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒。
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過2秒后,EP與PQ有什么關(guān)系?請(qǐng)說明理由。
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,則當(dāng)t為何值時(shí),能使得△EPB與△CQP全等?此時(shí)點(diǎn)Q的運(yùn)動(dòng)速度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩個(gè)全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊合,使三角尺的60°角的頂點(diǎn)與點(diǎn)A重合,兩邊分別與AB,AC重合.將三角尺繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn).
(1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD相交于點(diǎn)E,F時(shí),(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結(jié)論并證明你的結(jié)論;
(2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點(diǎn)E,F時(shí)(如圖2),你在(1)中得到的結(jié)論還成立嗎?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=______度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com