(2007•日照)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

【答案】分析:(1)利用EC為⊙O的切線,ED也為⊙O的切線可求EC=ED,再求得EB=EC,EB=ED可知點E是邊BC的中點;
(2)解答此題需要運用圓切線和割線的性質(zhì)和勾股定理求解;
(3)判定△ABC是等腰直角三角形時要用到正方形的性質(zhì)來求得相等的邊.
解答:(1)證明:連接DO;
∵∠ACB=90°,AC為直徑,
∴EC為⊙O的切線;
又∵ED也為⊙O的切線,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即點E是邊BC的中點;

(2)解:∵BC,BA分別是⊙O的切線和割線,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2=36,
∴BA=3,
在Rt△ABC中,由勾股定理得
AC===3;

(3)解:△ABC是等腰直角三角形.
理由:∵四邊形ODEC為正方形,
∴∠DOC=∠ACB=90°,即DO∥BC,
又∵點E是邊BC的中點,
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
點評:本題考查了圓的切線性質(zhì),及解直角三角形的知識.運用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點E,與AD交于點F(E,F(xiàn)不與頂點重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開后,再將紙片ABEF沿AB對稱翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過原矩形的頂點A和頂點D時,所對應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過原矩形的一個頂點的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請給予證明;你若認(rèn)為不平行,請你說明當(dāng)a與b滿足什么關(guān)系時,它們垂直?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點E,與AD交于點F(E,F(xiàn)不與頂點重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開后,再將紙片ABEF沿AB對稱翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過原矩形的頂點A和頂點D時,所對應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過原矩形的一個頂點的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請給予證明;你若認(rèn)為不平行,請你說明當(dāng)a與b滿足什么關(guān)系時,它們垂直?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2007•日照)如圖,AC⊥BC于點C,BC=a,CA=b,AB=c,⊙O與直線AB、BC、CA都相切,則⊙O的半徑等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省日照市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•日照)如圖,在周長為20cm的?ABCD中,AB≠AD,AC、BD相交于點O,OE⊥BD交AD于E,則△ABE的周長為( )

A.4cm
B.6cm
C.8cm
D.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•日照)如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點E,與AD交于點F(E,F(xiàn)不與頂點重合),設(shè)AB=a,AD=b,BE=x.
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開后,再將紙片ABEF沿AB對稱翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經(jīng)過原矩形的頂點A和頂點D時,所對應(yīng)的x:b的值;
(2)在直線EE′經(jīng)過原矩形的一個頂點的情形下,連接BE′,直線BE′與EF是否平行?你若認(rèn)為平行,請給予證明;你若認(rèn)為不平行,請你說明當(dāng)a與b滿足什么關(guān)系時,它們垂直?

查看答案和解析>>

同步練習(xí)冊答案