如圖,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延長線于F.
(1)若∠B+∠DCF=180°,求證:四邊形ABCD是等腰梯形;
(2)若E是線段CD的中點(diǎn),且CF:CB=1:3,AD=6,求梯形ABCD中位線的長.

【答案】分析:(1)根據(jù)等角的補(bǔ)角相等即可證明梯形的兩個底角相等,從而證明了該梯形是等腰梯形;
(2)發(fā)現(xiàn)全等三角形,根據(jù)全等三角形的性質(zhì)證明AD=CF,從而得到上下底之間的關(guān)系,求得下底長,再根據(jù)梯形的中位線定理進(jìn)行計(jì)算.
解答:(1)證明:∵∠DCB+∠DCF=180°,
又∵∠B+∠DCF=180°,
∴∠B=∠DCB.
∵四邊形ABCD是梯形,
∴四邊形ABCD是等腰梯形.

(2)解:∵AD∥BC,
∴∠DAE=∠F.
∵E是線段CD的中點(diǎn),
∴DE=CE.
又∵∠DEA=∠FEC,
∴△ADE≌△FCE,
∴AD=CF,
∵CF:BC=1:3,
∴AD:BC=1:3.
∵AD=6,
∴BC=18.
∴梯形ABCD的中位線=(18+6)÷2=12.
點(diǎn)評:考查了等腰梯形的判定、全等三角形的判定和性質(zhì)、梯形的中位線定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,則BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
時,則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請舉出一個反例說明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以3cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以1cm/s的速度移動,P,Q分別從A,B同時出發(fā),當(dāng)其中一精英家教網(wǎng)點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止.過Q作QD∥AB交AC于點(diǎn)D,連接PD,設(shè)運(yùn)動時間為t秒時,四邊形BQDP的面積為s.
(1)用t的代數(shù)式表示QD的長.
(2)求s關(guān)于t的函數(shù)解析式,并求出運(yùn)動幾秒梯形BQDP的面積最大?最大面積是多少?
(3)連接QP,在運(yùn)動過程中,能否使△DPQ為等腰三角形?若存在,求出t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•遂寧)如圖,已知等腰△ABC的面積為4cm2,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),則梯形DBCE的面積為
3
3
 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點(diǎn),連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應(yīng)用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE、EC,試?yán)蒙项}得到的結(jié)論說明S△DEC=S△ADE+S△EBC;
解決問題
(3)現(xiàn)有一塊如圖③所示的梯形試驗(yàn)田,想種兩種農(nóng)作物做對比實(shí)驗(yàn),用一條過D點(diǎn)的直線,將這塊試驗(yàn)田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點(diǎn)的位置.

查看答案和解析>>

同步練習(xí)冊答案