【題目】計(jì)算:
(1)﹣24+3×(﹣1)2016+100÷(﹣5)2
(2) xy﹣ x2y2 xy2+ xy﹣ xy2
(3)4y2﹣[3y﹣(3﹣2y)+2y2]﹣2
(4) xy﹣ x2y2 xy2+ xy﹣ xy2

【答案】
(1)解:原式=﹣16+3+4=﹣9
(2)解:原式= xy﹣ x2y2﹣xy2
(3)解:原式=4y2﹣3y+3﹣2y﹣2y2﹣2=2y2﹣5y+1
(4)解:原式= xy﹣ x2y2﹣xy2
【解析】根據(jù)有理數(shù)的運(yùn)算法則計(jì)算即可,先算平方,再算乘除,再算加減;根據(jù)如果兩個單項(xiàng)式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項(xiàng)式為同類項(xiàng);合并同類項(xiàng)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于D,點(diǎn)D,E,F(xiàn)分別是BC,AB,AC的中點(diǎn).求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示0.0000907=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知命題:如圖,點(diǎn)A,D,B,E在同一條直線上,且AD=BE,∠A=∠FDE,則△ABC≌△DEF.判斷這個命題是真命題還是假命題,如果是真命題,請給出證明;如果是假命題,請?zhí)砑右粋適當(dāng)條件使它成為真命題,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點(diǎn)E,∠CBD=90°,BC=4,BE=ED=3,AC=10,則四邊形ABCD的面積為(
A.6
B.12
C.20
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若以A(﹣0.5,0)、B(2,0)、C(0,1)三點(diǎn)為頂點(diǎn)要畫平行四邊形,則第四個頂點(diǎn)不可能在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程xm1+3=0是一元一次方程,則m值為( )

A. ﹣2 B. 2 C. ﹣3 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為-10,B點(diǎn)對應(yīng)的數(shù)為70.
(1)請寫出AB的中點(diǎn)M對應(yīng)的數(shù)
(2)現(xiàn)在有一只電子螞蟻P從A點(diǎn)出發(fā),以3個單位/秒的速度向右運(yùn)動,同時另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2個單位/秒的速度向左運(yùn)動,設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請你求出C點(diǎn)對應(yīng)的數(shù)
(3)若當(dāng)電子螞蟻P從A點(diǎn)出發(fā),以3個單位/秒的速度向右運(yùn)動,同時另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2單位/秒的速度向左運(yùn)動,經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距35個單位長度,并寫出此時P點(diǎn)對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向A點(diǎn)勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.

(1)AC的長是 , AB的長是
(2)在D、E的運(yùn)動過程中,線段EF與AD的關(guān)系是否發(fā)生變化?若不變化,那么線段EF與AD是何關(guān)系,并給予證明;若變化,請說明理由.
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(4)當(dāng)t為何值,△BEF的面積是2 ?

查看答案和解析>>

同步練習(xí)冊答案