(2013•鷹潭模擬)某校九年級(1)班數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明將一塊直角三角板的直角頂點(diǎn)放在斜邊BC邊的中點(diǎn)O上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn),其中三角板兩條直角邊所在的直線分別交AB、AC于點(diǎn)E、F.
(1)小明在旋轉(zhuǎn)中發(fā)現(xiàn):在圖1中,線段AE與CF相等.請你證明小明發(fā)現(xiàn)的結(jié)論;
(2)小明將一塊三角板中含45°角的頂點(diǎn)放在點(diǎn)A上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.當(dāng)0°<α≤45°時(shí),小明在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:
BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的方法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的方法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3).
請你從中任選一種方法進(jìn)行證明;
(3)小明繼續(xù)旋轉(zhuǎn)三角板,在探究中得出:當(dāng)45°<α<135°且α≠90°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立.現(xiàn)請你繼續(xù)探究:當(dāng)135°<α<180°時(shí)(如圖4),等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.
分析:(1)連接OA,證△AEO≌△CFO,推出AE=CF即可;
(2)成立.小穎的方法是應(yīng)用折疊對稱的性質(zhì)和SAS得到△AEF≌△AEC,在Rt△DFE中應(yīng)用勾股定理而證明;小亮的方法是將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,根據(jù)旋轉(zhuǎn)的性質(zhì)用SAS得到△ACE≌△ACG,從而在Rt△CEG中應(yīng)用勾股定理而證明.
(3)當(dāng)135°<α<180°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立.可以根據(jù)小穎和小亮的方法進(jìn)行證明即可.
解答:(1)證明:如圖1,連接OA.
∵在等腰直角△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠C=45°.
又∵點(diǎn)O是BC的中點(diǎn),
∴OA=OC,∠EAO=∠C=45°.
∵∠EOF=90°,
∴∠AEO=∠B+∠BOE,∠CFO=180°-∠C-(180°-∠BOE-90°)=45°+∠BOE=∠B+∠BOE,
∴∠AEO=CFO,
在△AEO與△CFO中,
∠AEO=∠CFO
∠EAO=∠C
OA=OC

∴△AEO≌△CFO(AAS),
∴AE=CF;

(2)選擇小穎的方法.
證明:如圖2,連接EF.
由折疊可知,∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
AF=AC
∠FAE=∠CAE
AE=AE
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2
∴BD2+CE2=DE2.       

(3)解:當(dāng)135°<α<180°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立.證明如下:
 如圖4,按小穎的方法作圖,設(shè)AB與EF相交于點(diǎn)G.
∵將△ABD沿AD所在的直線對折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
AF=AC
∠FAE=∠CAE
AE=AE
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2
點(diǎn)評:本題考查了角平分線的定義,等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),折疊對稱的性質(zhì),全等三角形的判定和性質(zhì)等知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)計(jì)算:-22+|
12
-4|+(
1
3
)-1+2tan60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)在平行四邊形ABCD中,點(diǎn)E是DC上一點(diǎn),且CE=BC,AB=8,BC=5.
(1)作AF平分∠BAD交DC于F(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下求EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)已知:拋物線m:y=a(x-2)2+b(ab<0)的頂點(diǎn)為P,與x軸的交點(diǎn)為A,B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)當(dāng)a=-1,b=4,直接寫出與拋物線m有關(guān)的三條正確結(jié)論;
(2)若拋物線m經(jīng)過原點(diǎn),且△ABP為直角三角形.求a,b的值;
(3)若將拋物線m沿x軸翻折180°得拋物線n,拋物線n的頂點(diǎn)為Q,則以A,P,B,Q為頂點(diǎn)的四邊形能否為正方形?若能,請求出a,b滿足的關(guān)系式;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)如圖是蹺蹺板示意圖,橫板AB繞中點(diǎn)O上下轉(zhuǎn)動(dòng),立柱OC與地面垂直,蹺蹺板AB的一端B碰到地面時(shí),AB與地面的夾角為15°,且AB=6m.
(1)求此時(shí)另一端A離地面的距離(精確到0.1m);
(2)若蹺動(dòng)AB,使端點(diǎn)A碰到地面,求點(diǎn)A運(yùn)動(dòng)路線的長.
(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)如圖,AB是⊙O的直徑,AC是弦,∠ACD=
12
∠AOC,AD⊥CD于點(diǎn)D.
(1)求證:CD是⊙O的切線;
(2)若AB=10,AD=2,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案