精英家教網 > 初中數學 > 題目詳情
如圖,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,點E從A點出發(fā)以每秒2個單位長的速度向B點運動,點F從C點同時出發(fā),以每秒1個單位長的速度向D點運動.設運動時間為t秒,當一個動點到達終點時,另一個動點也隨之停止運動,過點F作FH⊥AB于點P,連接BD交FP于點O,連接OE.
(1)底邊AB=______;
(2)設△BOE的面積為S△BOE;
①求S△BOE與時間t的函數關系式;
②當t為何值時,S△BOE=S梯形ABCD
(3)是否存在點E,使得△BOE為直角三角形;若存在,求出t的值;若不存在,請說明理由;
(4)是否存在某一時刻,使得OE∥BC?若存在,直接寫出t的值;若不存在,請說明理由.

【答案】分析:(1)過點C作CH⊥AB于H,利用已知條件和勾股定理即可求出AB的值;
(2)①經過t秒時,AE=2t,CF=t,則BE=6-2t,DF=3-t,證明△ODF∽△DBA,利用相似的性質可求出OF的長,進而求出OP的長,再利用三角形面積公式即可求出△BOE的面積;②利用已知條件求出梯形ABCD的面積,有①可得關于t的一元二次方程,求出符合題意的t值即可;
(3)設經過t秒時,△BOE為直角三角形,在分當∠BOE=90°和∠OEB=90°時討論求出符合題意的t值即可;
(4)當OE∥BC時易證△EOB∽△CBD和△OBP∽△DBA,利用相似的性質:對應邊的比值相等即可求出符合題意的t值.
解答:解:(1)過點C作CH⊥AB于H,
∵∠A=90°,AD=4,CD=3,BC=5,
∴CH=4,CD=AH=3,
∴BH==3,
∴AB=3+3=6,
故答案為6;

(2)①經過t秒時,AE=2t,CF=t,則BE=6-2t,DF=3-t,
∵AB∥DC,
∴∠ODF=∠DBA,
∵FP⊥AB,
∴FP⊥CD,
∴∠DFO=∠A=90°,
∴△ODF∽△DBA,
=
=,OF=2-t.
∴OP=FP-OF=4-(2-t)=2+t,
∴S△BOE=BE•OP=(6-2t)(2+t)=-t2+6;
②∵S梯形ABCD=(CD+AB)•AD=(3+6)×4=18.
  S△BOE=S梯形ABCD,即-t2+6=×18,
解得t=或t=

(3)存在.
設經過t秒時,△BOE為直角三角形.
①若∠BOE=90°,則AE<AP,
∵AP=DF,
∴2t<3-t.解得t<1,
∴EP=AP-AE=3-t-2t=3-3t,BP=AB-AP=6-(3-t)=3+t.
∵∠EOP+∠BOP=90°,∠OBP+∠BOP=90°,
∴∠EOP=∠OBP,
∵∠OPE=∠BPO=90°,
∴△EOP∽△OBP,
=,OP2=BP•EP.
∴(2+t)2=(3+t)(3-3t),
解得t=;
②若∠OEB=90°,此時OE與OP重合,
∴AE=AP=DF,
∴2t=3-t,
∴t=1;

(4)存在,t=
當OE∥BC時,易證△EOB∽△CBD,
=,
易證△OBP∽△DBA,
=
=,=,
解得t=
點評:本題考查了直角梯形的性質、勾股定理的運用、三角形的面積公式以及梯形的面積公式、相似三角形的判定和相似三角形的性質、以及分類討論思想在解幾何圖形中的應用,題目綜合性很強難度不。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案