已知:如圖,點(diǎn)A在y軸上,⊙A與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)D(0,3)和點(diǎn)E(0,-1)
(1)求經(jīng)過B、E、C三點(diǎn)的二次函數(shù)的解析式;
(2)若經(jīng)過第一、二、三象限的一動(dòng)直線切⊙A于點(diǎn)P(s,t),與x軸交于點(diǎn)M,連接PA并延長(zhǎng)與⊙A交于點(diǎn)Q,設(shè)Q點(diǎn)的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時(shí),求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍.
(1)解法一:連接AC
∵DE為⊙A的直徑,DE⊥BC
∴BO=CO
∵D(0,3),E(0,-1)
∴DE=|3-(-1)|=4,OE=1
∴AO=1,AC=
1
2
DE=2
在Rt△AOC中,AC2=AO2+OC2
∴OC=
3

∴C(
3
,0),B(
3
,0)
設(shè)經(jīng)過B、E、C三點(diǎn)的拋物線的解析式為y=a(x-
3
)(x+
3
)
,
則-1=a(0-
3
)(0+
3

解得a=
1
3

∴y=
1
3
(x-
3
)(x+
3
)=
1
3
x2-1(2分).
解法二:∵DE為⊙A的直徑,DE⊥BC
∴BO=CO
∴OC2=OD•OE
∵D(0,3),E(0,-1)
∴DO=3,OE=1
∴OC2=3×1=3
∴OC=
3

∴C(
3
,0),B(-
3
,0)
以下同解法一;

(2)解法一:過點(diǎn)P作PF⊥y軸于F,過點(diǎn)Q作QN⊥y軸于N
∴∠PFA=∠QNA=90°,F(xiàn)點(diǎn)的縱坐標(biāo)為t
N點(diǎn)的縱坐標(biāo)為y
∵∠PAF=∠QAN,PA=QA
∴△PFA≌△QNA
∴FA=NA
∵AO=1
∴A(0,1)
∴|t-1|=|1-y|
∵動(dòng)切線PM經(jīng)過第一、二、三象限
觀察圖形可得1<t<3,-1<y<1.
∴t-1=1-y.
即y=-t+2.
∴y關(guān)于t的函數(shù)關(guān)系式為y=-t+2(1<t<3)(5分)
解法二:(i)當(dāng)經(jīng)過一、二、三象限的切線PM運(yùn)動(dòng)到使得Q點(diǎn)與C點(diǎn)重合時(shí),y=0
連接PB
∵PC是直徑
∴∠PBC=90°
∴PB⊥x軸,
∴PB=t.
∵PA=AC,BO=OC,AO=1,
∴PB=2AO=2,
∴t=2.
即t=2時(shí),y=0.
(ii)當(dāng)經(jīng)過一、二、三象限的切線
PM運(yùn)動(dòng)使得Q點(diǎn)在x軸上方時(shí),y>0
觀察圖形可得1<t<2
過P作PS⊥x軸于S,過Q作QT⊥x軸于T

則PSAOQT
∵點(diǎn)A為線段PQ的中點(diǎn)
∴點(diǎn)O為線段ST的中點(diǎn)
∴AO為梯形QTSP的中位線
∴AO=
QT+PS
2

∴1=
y+t
2

∴y=-t+2.
∴y=-t+2(1<t<2).
(iii)當(dāng)經(jīng)過一、二、三象限的切線PM運(yùn)動(dòng)使得Q點(diǎn)在x軸下方時(shí),y<0,觀察圖形可得2<t<3
過P作PS⊥x軸于S,過Q作QT⊥x軸于T,設(shè)PQ交x軸于R
則QTPS
∴△QRT△PRS
QT
PS
=
QR
PR

設(shè)AR=m,則
-y
t
=
2-m
2+m
&&(1)
又∵AO⊥x軸,
∴AOPS
∴△ROA△RSP
AO
PS
=
RA
RP

1
t
=
m
2+m
&&(2)
由(1)、(2)得y=-t+2
∴y=-t+2(2<t<3)
綜上所述:y與t的函數(shù)關(guān)系式為y=-t+2(1<t<3)(5分)

(3)解法一:當(dāng)y=0時(shí),Q點(diǎn)與C點(diǎn)重合,連接PB
∵PC為⊙A的直徑
∴∠PBC=90°
即PB⊥x軸
∴s=-
3

將y=0代入y=-t+2(1<t<3),得0=-t+2
∴t=2∴P(-
3
,2)
設(shè)切線PM與y軸交于點(diǎn)I,則AP⊥PI
∴∠API=9
在△API與△AOC中
∵∠API=∠AOC=90°,∠PAI=∠OAC
∴△API△AOC
AP
AO
=
AI
AC

∴I點(diǎn)坐標(biāo)為(0,5)
設(shè)切線PM的解析式為y=kx+5(k≠0),
∵P點(diǎn)的坐標(biāo)為(-
3
,2)
,
∴2=-
3 k+5.
解得k=
3
,
∴切線PM的解析式為y=
3
x+5(7分)
設(shè)切線PM與拋物線y=
1
3
x2-1交于G、H兩點(diǎn)
y=
1
3
x2-1
y=
3
x+5

可得x1=
3
3
-3
11
2
x2=
3
3
+3
11
2

因此,G、H的橫坐標(biāo)分別為
3
3
-3
11
2
、
3
3
+3
11
2

根據(jù)圖象可得拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍是
3
3
-3
11
2
<x<
3
3
+3
11
2
(9分)
解法二:同(3)解法一
可得P(-
3
,2)
∵直線PM為⊙A的切線,PC為⊙A的直徑
∴PC⊥PM
在Rt△CPM與Rt△CBP中
cos∠PCM=
PC
CM
=
CB
PC

∵CB=2
3
,PC=4
∴CM=
PC2
CB
=
16
2
3
=
8
3
3

設(shè)M點(diǎn)的坐標(biāo)為(m,0),
則CM=
3
-m=
8
3
3

∴m=-
5
3
3

即M(-
5
3
3
,0).
設(shè)切線PM的解析式為y=kx+b(k≠0),
    <bdo id="6quwo"><tbody id="6quwo"></tbody></bdo>
    0=-
    5
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)位于x軸下方,它到x軸的距離為4,下表是x與y的對(duì)應(yīng)值表:
    x______0______2______
    y0-3-4-30
    (1)求出二次函數(shù)的解析式;
    (2)將表中的空白處填寫完整;
    (3)在右邊的坐標(biāo)系中畫出y=ax2+bx+c的圖象;
    (4)根據(jù)圖象回答:當(dāng)x為何值時(shí),函數(shù)y=ax2+bx+c的值大于0.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    如圖,拋物線y=-
    1
    2
    x2+
    1
    2
    x+6與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
    (1)求△ABC的面積;
    (2)已知E點(diǎn)(0,-3),在第一象限的拋物線上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    (6999•重慶)如的,二次函數(shù)y=96+29+c的的象與9軸只有一個(gè)公共點(diǎn)P,與y軸的交點(diǎn)為Q.過點(diǎn)Q的直線y=69+m與9軸交于點(diǎn)A,與這個(gè)二次函數(shù)的的象交于另一點(diǎn)2,若S△2PQ=3S△APQ,求這個(gè)二次函數(shù)的解析式.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線y=-
    1
    2
    x2+bx+c經(jīng)過矩形ABCO的頂點(diǎn)B、C,D為BC的中點(diǎn),直線AD與y軸交于E點(diǎn),與拋物線y=-
    1
    2
    x2+bx+c交于第四象限的F點(diǎn).
    (1)求該拋物線解析式與F點(diǎn)坐標(biāo);
    (2)如圖(2),動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒
    13
    2
    個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過點(diǎn)P作PH⊥OA,垂足為H,連接MP,MH.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
    ①問EP+PH+HF是否有最小值?如果有,求出t的值;如果沒有,請(qǐng)說明理由.
    ②若△PMH是等腰三角形,請(qǐng)直接寫出此時(shí)t的值.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
    (1)求y與x之間的函數(shù)關(guān)系式;
    (2)設(shè)公司獲得的總利潤(rùn)(總利潤(rùn)=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別相交于A(-1,0)、B(3,0)、C(0,3)三點(diǎn),其頂點(diǎn)為D.(1)求:經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
    (2)求四邊形ABDC的面積;
    (3)試判斷△BCD與△COA是否相似?若相似寫出證明過程;若不相似,請(qǐng)說明理由.
    注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
    b
    2a
    ,
    4ac-b2
    4a
    )

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

    服裝店銷售一種進(jìn)價(jià)為50元的襯衣,生產(chǎn)廠家規(guī)定售價(jià)為60元-170元,當(dāng)定價(jià)為60元時(shí),平均每周可賣出70件,定價(jià)每漲價(jià)10元,每周少買5件,現(xiàn)將這種襯衣售價(jià)定為x元(規(guī)定x是10的整數(shù)倍),這種襯衣每周銷售件數(shù)為y件,每周賣這種襯衣所得的利潤(rùn)為w元,
    (1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系(不必寫x的取值范圍)
    (2)請(qǐng)求出w與x的函數(shù)關(guān)系(不必寫x的取值范圍)
    (3)要想每周取得2500元利潤(rùn),并且讓顧客得到實(shí)惠,應(yīng)將售價(jià)定為多少元?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

    豎直向上發(fā)射的小球的高度h(m)關(guān)于運(yùn)動(dòng)時(shí)間t(s)的函數(shù)表達(dá)式為h=at2+bt,其圖象如圖所示,若小球在發(fā)射后第2秒與第6秒時(shí)的高度相等,則下列時(shí)刻中小球的高度最高的是( 。
    A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒

    查看答案和解析>>

    同步練習(xí)冊(cè)答案