解::(1)當(dāng)0≤x≤4時(shí)設(shè)y
1=kx,將(4,1.6)代入得:
1.6=4k,
解得:k=0.4,
當(dāng)k>4時(shí),設(shè)y
1=kx+b,
將點(diǎn)(4,1.6)(8.2.4)代入得:
解得:k=0.2,b=0.8
故y
1=
∵頂點(diǎn)A的坐標(biāo)為(4,3.2),
∴設(shè)y
2=a(x-4)
2+3.2,
∵經(jīng)過點(diǎn)(0,0)
∴0=a(0-4)
2+3.2
解得a=-0.2,
∴y
2=-0.2(x-4)
2+3.2=-0.2x
2+1.6x(0≤x≤4)
當(dāng)x>4時(shí),y
2=3.2;
(2)假設(shè)投資購(gòu)買B型用x萬元、A型為(10-x)萬元,
當(dāng)0≤x≤4時(shí):y=y
1+y
2=0.2(10-x)+0.8-0.2x
2+1.6x;
=-0.2x
2+1.4x+2.8=-0.2(x-3.5)
2+3.4125,
當(dāng)4<x<6時(shí):y=y
1+y
2=0.2(10-x)+0.8+3.2=-0.2x+6;
當(dāng)x≥6時(shí):y=y
1+y
2=0.4(10-x)+3.2=-0.4x+7.2;
(3)當(dāng)0≤x<4時(shí):y=-0.2x
2+1.4x+2.8=-0.2(x-3.5)
2+3.4125,
當(dāng)4≤x<6時(shí):y=y
1+y
2=0.2(10-x)+0.8+3.2=-0.2x+6;
∵k<0,
∴當(dāng)x取得最小值時(shí)有最大值,
∴當(dāng)x=4時(shí)有最大值5.2萬元;
當(dāng)x≥6時(shí):y=y
1+y
2=0.4(10-x)+3.2=-0.4x+7.2;
∵k<0,
∴當(dāng)x取得最小值時(shí)有最大值,
∴當(dāng)x=6時(shí)有最大值4.8萬元;
∴當(dāng)投資B型機(jī)械4萬元,A型機(jī)械6萬元能獲得最大補(bǔ)貼,最大補(bǔ)貼金額為5.2萬元.
分析:(1)根據(jù)函數(shù)圖象上的點(diǎn)的坐標(biāo),利用待定系數(shù)法求出函數(shù)解析式即可;
(2)根據(jù)y=y
1+y
2得出關(guān)于x的二次函數(shù).
(3)求出二次函數(shù)最值即可.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出二次函數(shù)模型,利用二次函數(shù)的知識(shí)解決生活中的實(shí)際問題.