【題目】同學(xué)們,我們曾經(jīng)研究過n×n的正方形網(wǎng)格,得到了網(wǎng)格中正方形的總數(shù)的表達(dá)式為12+22+32+…+n2 . 但n為100時(shí),應(yīng)如何計(jì)算正方形的具體個(gè)數(shù)呢?下面我們就一起來探究并解決這個(gè)問題.首先,通過探究我們已經(jīng)知道0×1+1×2+2×3+…+(n﹣l)×n
= n(n+1)(n﹣1)時(shí),我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+()
…
(2)歸納結(jié)論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n﹣l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n﹣1)×n
=()+[]
=+
= ×
(3)實(shí)踐應(yīng)用:
通過以上探究過程,我們就可以算出當(dāng)n為100時(shí),正方形網(wǎng)格中正方形的總個(gè)數(shù)是 .
【答案】
(1)(1+3)×4;4+3×4;0×1+1×2+2×3+3×4
(2)1+2+3+…+n;0×1+1×2+2×3+…+(n﹣1)n;n(n+1);n(n+1)(n﹣1);n(n+1)(2n+1)
(3)338350
【解析】解:(1)觀察并猜想:(1+3)×4;4+3×4;0×1+1×2+2×3+3×4;(2)歸納結(jié)論:1+2+3+…+n;0×1+1×2+2×3+…+(n﹣1)n; n(n+1); n(n+1)(n﹣1);n(n+1)(2n+1);(3)實(shí)踐應(yīng)用:當(dāng)n=100時(shí), ×100×(100+1)(200+1)=338350.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90,BD是△ABC的角平分線,點(diǎn)O在BD上,分別過點(diǎn)O作OE⊥BC,OF⊥AC,垂足為E,F,且OE=OF.
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.
(1)求∠B的度數(shù);
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. x6+x6=2x12B. a2a4﹣(﹣a3)2=0
C. (x﹣y)2=x2﹣2xy﹣y2D. (a+b)(b﹣a)=a2+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,已知AB與 CD不平行,∠ABD=∠ACD,請你添加一個(gè)條件:______ ,使的加上這個(gè)條件后能夠推出AD∥BC ,且AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點(diǎn)A(a,2),并且直線y=kx+b經(jīng)過x軸上點(diǎn)B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是( )
A.1cm,2cm,2cmB.1cm,2cm,4cm
C.2cm,3cm,5cmD.5cm,6cm,12cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com