已知關于x的方程a2x2+(2a-1)x+1=0有兩個實數(shù)根x1,x2.(1)當a為何值時,x1≠x2;(2)是否存在實數(shù)a,使方程的兩個實數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<.
∴當a<時,方程有兩個不相等的實數(shù)根.
(2)存在,如果方程的兩個實數(shù)根x1,x2互為相反數(shù),則x1+x2=-=0①,
解得a=,經(jīng)檢驗,a=是方程①的根.
∴當a=時,方程的兩個實數(shù)根x1與x2互為相反數(shù).
上述解答過程是否有錯誤?如果有,請指出錯誤之處,并解答.
有錯誤
解析試題分析:(1)根據(jù)根的判別式結合一元二次方程的二次項系數(shù)不為0即可作出判斷;
(2)根據(jù)a=不符合(1)中得到的a的范圍即可作出判斷.
(1)若方程有兩個不相等實數(shù)根,則方程首先滿足是一元二次方程,
∴a2≠0且滿足(2a-1)2-4a2>0,
∴a<且a≠0;
(2)a不可能等于
∵(1)中求得方程有兩個不相等實數(shù)根,同時a的取值范圍是a<且a≠0,
而a=>不符合題意,所以不存在這樣的a值,使方程的兩個實數(shù)根互為相反數(shù)
考點:一元二次方程根的判別式
點評:解題的關鍵是熟記一元二次方程根的情況與判別式△的關系:(1)方程有兩個不相等的實數(shù)根;(2)方程有兩個相等的實數(shù)根;(3)方程沒有實數(shù)根.
科目:初中數(shù)學 來源: 題型:
4b-a | a2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:101網(wǎng)校同步練習 初二數(shù)學 人教版(新課標2004年初審) 人教版(新課標2004年初審) 題型:013
已知關于x的方程(a2-1)x2+(1-a)x+a-2=0,下列結論中錯誤的是
A.方程一定是一元二次方程或一元一次方程
B.當a≠±1時,方程是一元二次方程
C.當a=-1時,方程是一元一次方程
D.當a=2時,方程有一個根為零
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com