二次函數(shù)的圖象與軸的一個交點為A,另一個交點為B,與軸交于點C.
(1)求的值及點B、點C的坐標(biāo);
(2)直接寫出當(dāng)時,的取值范圍;
(3)直接寫出當(dāng)時,的取值范圍.
(1)B(-1,0),C(0,3);(2);(3)0≤y≤4

試題分析:(1)由題意把A代入二次函數(shù)即可求得m的值,從而可以求得結(jié)果;
(2)根據(jù)二次函數(shù)的圖象的開口方向及與軸的交點坐標(biāo)即可判斷;
(3)分別求出時對應(yīng)的y值,再結(jié)合函數(shù)圖象的頂點坐標(biāo)即可得到結(jié)果.
(1)由題意得:0=-9+6+m,解得m=3 

當(dāng)時,,解得;當(dāng)時,
∴拋物線與x軸的另一交點B(-1,0),與y軸交點C(0,3);
(2)當(dāng)時,
(3)當(dāng)-1≤x≤2時,0≤y≤4.
點評:解答本題的關(guān)鍵是熟練掌握x軸上的點的縱坐標(biāo)為0,y軸上的點的橫坐標(biāo)為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,O是坐標(biāo)原點,點C的坐標(biāo)是(0,3),拋物線經(jīng)過點C,交x軸負(fù)半軸于點A.

(1)求c的值,并寫出拋物線解析式;
(2)將△AOC繞點O順時針旋轉(zhuǎn)90°,得到△A’OC’.
①求點C’的坐標(biāo),并通過計算判斷點C’是否在拋物線上;
②若將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△A’OC’的內(nèi)部(不包括△A’OC’的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖像如圖所示,點A0位于坐標(biāo)原點,A1,A2,A3,…,A2012在y軸的正半軸上,B1,B2,B3,…B2012在函數(shù)第一象限的圖像上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2011B2012A2012都為等邊三角形,計算出△A2011B2012A2012的邊長為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖坐標(biāo)平面上有一透明片,透明片上有一拋物線及一點P,且拋物線為二次函數(shù)y=x2的圖形,P的坐標(biāo)(2,4)。若將此透明片向右、向上移動后,得拋物線的頂點坐標(biāo)為(7,2),則此時P的坐標(biāo)為 (     )
 
A.(9,4)B.(9,6)C.(10,4) D.(10,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果二次函數(shù)y=ax2+bx+c(其中a、b、c為常數(shù),a≠0)的部分圖象如圖所示,它的對稱軸過點(-1,0),那么關(guān)于x的方程ax2+bx+c=0的一個正根可能是            (    )
A.0.5 B.1.5C.2.5D.3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)化成的形式,則         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

反比例函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的大致圖象如圖所示,它們的解析式可能分別是
A.,B.
C.,D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知點A(0,2),B(2,0),點C在的圖象上,若△ABC的面積為2,則這樣的C點有
A.1 個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)與y軸交點坐標(biāo)為(   )
A.(0,1)B.(0,2)C.(0,-1)D.(0,-2)

查看答案和解析>>

同步練習(xí)冊答案