已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

【答案】分析:根據(jù)在Rt△ADB中,sin∠DAB=,得出AB的長,進(jìn)而得出tan∠BAH=,求出BH的長,即可得出AH以及CH的長,進(jìn)而得出答案.
解答:解:BC=40×=10,
在Rt△ADB中,sin∠DAB=,sin53.2°≈0.8,
所以AB==20,
如圖,過B作BD⊥AD于點D,過點B作BH⊥AC,交AC的延長線于H,
在Rt△AHB中,∠BAH=∠DAC-∠DAB=79.8°-53.2°=26.6°,
tan∠BAH=,0.5=,AH=2BH,
BH2+AH2=AB2,BH2+(2BH)2=202,BH=4,所以AH=8
在Rt△BCH中,BH2+CH2=BC2,CH=2,
所以AC=AH-CH=8-2=6≈13.4,
答:此時貨輪與A觀測點之間的距離AC約為13.4km.
點評:此題主要考查了解直角三角形中方向角問題,根據(jù)已知構(gòu)造直角三角形得出BH的長是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•連云港)已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,
2
≈1.41,
5
≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(帶解析) 題型:解答題

已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年山東青島市嶗山區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16海里,一艘貨輪從B港口以40海里/h的速度沿∠ABC=45°的BC方向航行.現(xiàn)測得C處位于A觀測點北偏東79.8°(即∠DAC=79.8°)方向.求此時貨輪C與AB之間的最近距離(精確到0.1海里).

(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(解析版) 題型:解答題

已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

 

查看答案和解析>>

同步練習(xí)冊答案