【題目】已知一次函數(shù),,.

(1)說(shuō)明點(diǎn)在直線上;

(2)當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),點(diǎn)時(shí)直線上的一點(diǎn),若,求點(diǎn)的坐標(biāo).

【答案】(1)詳見(jiàn)解析;(2)點(diǎn)坐標(biāo)為,(,5).

【解析】

1)將x=2代入y=kx+3-2k,求出y=3,由此即可證出點(diǎn)M23)在直線y=kx+3-2上;
2)根據(jù)點(diǎn)C的坐標(biāo)利用待定系數(shù)法求出此時(shí)直線的解析式,由此可設(shè)點(diǎn)P的坐標(biāo)為(m,m),再根據(jù)SBCP=2SABC,即可得出關(guān)于m的含絕對(duì)值符號(hào)的一元一次方程,解方程求出m的值,將其代入P點(diǎn)坐標(biāo)即可得出結(jié)論.

證明:∵y=kx+3-2k,
∴當(dāng)x=2時(shí),y=2k+3-2k=3,
∴點(diǎn)M(2,3)在直線y=kx+3-2k上;
(2)解:將點(diǎn)C(-2,-3)代入y=kx+3-2k,
得:-3=-2k+3-2k,解得:k=,
此時(shí)直線CM的解析式為y=x.
設(shè)點(diǎn)P的坐標(biāo)為(m,m).
∵S△BCP=BC|yP-yB|,S△ABC=BC|yA-yC|,S△BCP=2S△ABC,
∴|m-(-3)|=2×[1-(-3)],
解得:m1=或m2=
∴點(diǎn)P的坐標(biāo)為(,-11)或(,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條不完整的數(shù)軸上一動(dòng)點(diǎn)向左移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)點(diǎn),再向右移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)

(1)①若點(diǎn)表示的數(shù)為0,則點(diǎn)、點(diǎn)表示的數(shù)分別為: 、 ;

②若點(diǎn)表示的數(shù)為1,則點(diǎn)、點(diǎn)表示的數(shù)分別為: 、 ;

2)如果點(diǎn)表示的數(shù)互為相反數(shù),求點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為射線AB上一點(diǎn),AB30,ACBC5,P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,MBP的中點(diǎn),NQM的中點(diǎn),以下結(jié)論:①BC2AC;②AB4NQ;③當(dāng)PBBQ時(shí),t12,其中正確結(jié)論的個(gè)數(shù)是(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)問(wèn)題:計(jì)算(其中m,n都是正整數(shù),且m2,n1).

探究問(wèn)題:為解決上面的數(shù)學(xué)問(wèn)題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過(guò)不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),并采取一般問(wèn)題特殊化的策略來(lái)進(jìn)行探究.

探究一:計(jì)算

1次分割,把正方形的面積二等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

探究二:計(jì)算++++

1次分割,把正方形的面積三等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

兩邊同除以2,得++++=

探究三:計(jì)算++++

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過(guò)程)

解決問(wèn)題:計(jì)算++++

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:_________,

所以, ++++=________

拓廣應(yīng)用:計(jì)算 ++++

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市米廠接到加工大米任務(wù),要求天內(nèi)加工完大米.米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時(shí)間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時(shí)完成加工任務(wù)為止,設(shè)甲、乙兩車間各自加工大米數(shù)量與甲車間加工時(shí)間()之間的關(guān)系如圖1所示;未加工大米與甲車間加工時(shí)間()之間的關(guān)系如圖2所示,請(qǐng)結(jié)合圖像回答下列問(wèn)題

(1)甲車間每天加工大米__________=______________;

(2)直接寫出乙車間維修設(shè)備后,乙車間加工大米數(shù)量()之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,BD為對(duì)角線.

(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點(diǎn)E,交BD于點(diǎn)F(保留作圖痕跡,不要求寫作法);

(2)在(1)的條件下,若AB=4,求△DEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

(1)當(dāng)桌子上放有個(gè)碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含的式子表示);

(2)分別從三個(gè)方向上看,其三視圖如下圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,某活動(dòng)小組用棋子擺出了下列圖形:

……

1個(gè)圖形 2個(gè)圖形 3個(gè)圖形 4個(gè)圖形

1)探索新知:

①第個(gè)圖形需要_________枚棋子;②第個(gè)圖形需要__________枚棋子.

2)思維拓展:

小明說(shuō):“我要用枚棋子擺出一個(gè)符合以上規(guī)律的圖形”,你認(rèn)為小明能擺出嗎?如果能擺出,請(qǐng)問(wèn)擺出的是第幾個(gè)圖形;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

碟子的個(gè)數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含x的式子表示);

2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案