【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
【答案】
(1)證明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等邊對(duì)等角).
∵D是BC的中點(diǎn),
∴BD=CD.
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS).
∴DE=DF
(2)解:∵AB=AC,∠A=60°,
∴△ABC為等邊三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE= BD,
∵BE=1,
∴BD=2,
∴BC=2BD=4,
∴△ABC的周長(zhǎng)為12
【解析】(1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用D是BC的中點(diǎn),求證△BED≌△CFD即可得出結(jié)論.(2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可算出△ABC的周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)的絕對(duì)值一定是( )
A.正數(shù)
B.負(fù)數(shù)
C.零或正數(shù)
D.零或負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為「P」,即「P」=+.(其中的“+”是四則運(yùn)算中的加法)
(1)求點(diǎn)A(﹣1,3),B(,)的勾股值「A」、「B」;
(2)點(diǎn)M在反比例函數(shù)的圖象上,且「M」=4,求點(diǎn)M的坐標(biāo);
(3)求滿足條件「N」=3的所有點(diǎn)N圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OB是∠AOC的平分線,OD是∠EOC的平分線.
(1)如果∠AOD=75°,∠BOC=19°,求∠DOE的度數(shù)。
(2)如果∠BOD=56°,求∠AOE的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年我市參加中考的人數(shù)大約有41300人,將41300用科學(xué)記數(shù)法表示為( )
A.413×102
B.41.3×103
C.4.13×104
D.0.413×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題
如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:ADBC=APBP.
(2)探究
如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用
請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出了,沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com