【題目】某商場將進價為4000元的電視以4400元售出,平均每天能售出6臺.為了配合國家財政推出的“節(jié)能家電補貼政策”的實施,商場決定采取適當?shù)慕祪r措施,調查發(fā)現(xiàn):這種電視的售價每降價50元,平均每天就能多售出3臺.
(1)現(xiàn)設每臺電視降價x元,商場每天銷售這種電視的利潤是y元,請寫出y與x之間的函數(shù)表達式.(不要求寫出自變量的取值范圍)
(2)每臺電視降價多少元時,商場每天銷售這種電視的利潤最高?最高利潤是多少?
(3)商場要想在這種電視銷售中每天盈利3600元,同時又要使百姓得到更多實惠,每臺電視應降價多少元?根據(jù)以上的結論,請你直接寫出售價在什么范圍時,每個月的利潤不低于3600元?
【答案】
(1)
解:設每臺電視降價x元,商場每天銷售這種電視的利潤是y元,
根據(jù)題意得出:y=(6+ ×3)(4400﹣4000﹣x)=﹣ x2+18x+2400
(2)
解:∵y=﹣ x2+18x+2400=﹣ (x﹣150)2+3750,
∴當x=150元時,y最大=3750元;
答:每臺電視降價150元時,商場每天銷售這種電視的利潤最高,最高利潤是3750元
(3)
解:∵商場要想在這種電視銷售中每天盈利3600元,
∴3600=﹣ (x﹣150)2+3750,
解得:x1=200,x2=100,
∵要使百姓得到更多實惠,
∴每臺電視應降價200元,
∴售價在4200元到4300元范圍時,每個月的利潤不低于3600元
【解析】(1)根據(jù)銷量乘以每臺利潤=總利潤,進而得出y與x之間的函數(shù)表達式;(2)利用配方法求出二次函數(shù)最值即可;(3)利用(1)中所求解析式以及一元二次方程的解法得出x的值,進而利用二次函數(shù)增減性得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系內,點A的坐標為(0,24),經過原點的直線l1與經過點A的直線l2相交于點B,點B坐標為(18,6).
(1)求直線l1 , l2的表達式;
(2)點C為線段OB上一動點(點C不與點O,B重合),作CD∥y軸交直線l2于點D,過點C,D分別向y軸作垂線,垂足分別為F,E,得到矩形CDEF.
①設點C的縱坐標為a,求點D的坐標(用含a的代數(shù)式表示)
②若矩形CDEF的面積為60,請直接寫出此時點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,根據(jù)2013﹣2017年某市財政總收入(單位:億元)統(tǒng)計圖所提供的信息,下列判斷正確的是( 。
A. 2013~2017年財政總收入呈逐年增長
B. 預計2018年的財政總收入約為253.43億元
C. 2014~2015年與2016~2017年的財政總收入下降率相同
D. 2013~2014年的財政總收入增長率約為6.3%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了減輕學生的課業(yè)負擔,某市教育行政部門規(guī)定中學生每天完成家庭作業(yè)的平均時間不能超過1.5小時,為了了解該市中學生課業(yè)負擔情況,對部分學生每天完成家庭作業(yè)所用的時間進行了抽樣調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中共調查了多少名學生?
(2)分別求出每天完成家庭作業(yè)所用的時間為“1小時”和“2小時”的學生人數(shù)占總人數(shù)的百分比,以及所用的時間為“1.5小時”的學生人數(shù),并補全兩個統(tǒng)計圖;
(3)本次調查中,中學生每天完成家庭作業(yè)所用的平均時間是否符合要求?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,“旱災無情人有情”.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在有理數(shù)的原有運算法則中,我們補充定義一種新運算“★”如下:a★b=(a+b)(a﹣b),例如:5★3=(5+3)×(5﹣3)=8×2=16,下面給出了關于這種新運算的幾個結論:① 3★(﹣2)=5;②a★b=b★a;③若b=0,則a★b=a2;④若a★b=0,則a=b.其中正確結論的有__;(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學閱讀:
古希臘數(shù)學家海倫曾提出一個利用三角形三邊之長求面積的公式:若一個三角形的三邊長分別為a、b、c,則這個三角形的面積為,其中.這個公式稱為“海倫公式”.
數(shù)學應用:
如圖1,在△ABC中,已知AB=9,AC=8,BC=7.
(1)請運用海倫公式求△ABC的面積;
(2)設AB邊上的高為,AC邊上的高,求的值;
(3)如圖2,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com