【題目】如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC.若DE=1,則BC的長(zhǎng)是_____.
【答案】3
【解析】
根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,再根據(jù)等邊對(duì)等角的性質(zhì)求出∠DAB=∠B,然后根據(jù)角平分線的定義與直角三角形兩銳角互余求出∠B=30°,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出BD,然后求解即可.
解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,
∴CD=DE=1,
∵DE是AB的垂直平分線,
∴AD=BD,
∴∠B=∠DAB,
∵∠DAB=∠CAD,
∴∠CAD=∠DAB=∠B,
∵∠C=90°,
∴∠CAD+∠DAB+∠B=90°,
∴∠B=30°,
∴BD=2DE=2,
∴BC=BD+CD=1+2=3,
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)學(xué)生開(kāi)展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100個(gè))為優(yōu)秀.下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)):
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | 總成績(jī) | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班總成績(jī)相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問(wèn)題:
(1)計(jì)算兩班的優(yōu)秀率;
(2)求兩班比賽數(shù)據(jù)的中位數(shù);
(3)求兩班比賽數(shù)據(jù)的方差;
(4)根據(jù)以上三條信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖象中,可以表示一次函數(shù)與正比例函數(shù)(,為常數(shù),且)的圖象的是()
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月20日-23日,首屆世界大會(huì)在北京舉行.某校的學(xué)生開(kāi)展對(duì)于知曉情況的問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為、、、四類(lèi),其中類(lèi)表示“非常了解”,類(lèi)表示“比較了解”,類(lèi)表示“基本了解”,類(lèi)表示“不太了解”,并把調(diào)查結(jié)果繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖表(不完整).
根據(jù)上述信息,解答下列問(wèn)題:
(1)這次一共調(diào)查了多少人;
(2)求“類(lèi)”在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,過(guò)頂點(diǎn)作射線.
(1)當(dāng)射線在外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,,().
①試證明是直角三角形;
②求線段的長(zhǎng).(用含的代數(shù)式表示)
(2)當(dāng)射線在內(nèi)部時(shí),如圖②,過(guò)點(diǎn)作于點(diǎn),連結(jié),請(qǐng)寫(xiě)出線段、、的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線.
(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若OB=5,BC=18,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.
(1)求證:AC=CE;
(2)求證:BC2﹣AC2=ABAC;
(3)已知⊙O的半徑為3.
①若=,求BC的長(zhǎng);
②當(dāng)為何值時(shí),ABAC的值最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于E,F兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)證明:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為△ABC內(nèi)一點(diǎn),E為△ABC外一點(diǎn),且∠ABC=∠DBE,∠3=∠4.
求證:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com