(2010•聊城)函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,下列結(jié)論:
①兩函數(shù)圖象的交點坐標為A(2,2);
②當x>2時,y2>y1
③直線x=1分別與兩函數(shù)圖象交于B、C兩點,則線段BC的長為3;
④當x逐漸增大時,y1的值隨著x的增大而增大,y2的值隨著x的增大而減。
則其中正確的是( )

A.只有①②
B.只有①③
C.只有②④
D.只有①③④
【答案】分析:①函數(shù)y1=x(x≥0),y2=(x>0)組成方程組得解之即可得兩函數(shù)圖象的交點坐標為A(2,2);②由圖象直接可得當x>2時,y2<y1;③把x=1分別代入函數(shù)y1=x(x≥0),y2=(x>0)可得y1=1,y2=4,BC的長為3;④考查正比例函數(shù)和反比例函數(shù)圖象的性質(zhì).
解答:解:①函數(shù)y1=x(x≥0),y2=(x>0)組成方程組得
解之得,即兩函數(shù)圖象的交點坐標為A(2,2)故①正確;
②由圖象直接可得當x>2時,y2<y1故②錯誤.
③把x=1分別代入函數(shù)y1=x(x≥0),y2=(x>0)可得y1=1,y2=4,∴
BC的長為3,故③正確;
④函數(shù)y1=x(x≥0)中,k>0,y隨x增大而增大,
y2=(x>0)中,k>0,在每一象限內(nèi)y隨x增大而減小,故④正確.
故選:D.
點評:此題綜合考查了反比例函數(shù)的性質(zhì)與正比例函數(shù)的性質(zhì),同學(xué)們要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•聊城)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•聊城)如圖,過點Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點P,能表示這個一次函數(shù)圖象的方程是( )

A.3x-2y+3.5=0
B.3x-2y-3.5=0
C.3x-2y+7=0
D.3x+2y-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:選擇題

(2010•聊城)函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,下列結(jié)論:
①兩函數(shù)圖象的交點坐標為A(2,2);
②當x>2時,y2>y1;
③直線x=1分別與兩函數(shù)圖象交于B、C兩點,則線段BC的長為3;
④當x逐漸增大時,y1的值隨著x的增大而增大,y2的值隨著x的增大而減。
則其中正確的是( )

A.只有①②
B.只有①③
C.只有②④
D.只有①③④

查看答案和解析>>

同步練習(xí)冊答案