如圖1,在△ABC中,ABBC=5,AC="6." △ECD是△ABC沿CB方向平移得到的,連結AE,ACBE相交于點O.

【小題1】(1)判斷四邊形ABCE是怎樣的四邊形,并證明你的結論;
【小題2】(2)如圖2,P是線段BC上一動點(不與點B、C重合),連接PO并延長交線段AE于點Q,QRBD,垂足為點R.
①四邊形PQED的面積是否隨點P的運動而發(fā)生變化?若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當線段BP的長為何值時,以點P、Q、R為頂點的三角形與△BOC相似?



【小題1】(1)四邊形ABCE是菱形.
證明:∵ △ECD是△ABC沿BC方向平移得到的,
ECAB,ECAB.
∴ 四邊形ABCE是平行四邊形.
又∵ ABBC,
∴四邊形ABCE是菱形
【小題2】(2)①四邊形PQED的面積不發(fā)生變化,理由如下:
由菱形的對稱性知,△PBO≌△QEO,
SPBOSQEO
∵ △ECD是由△ABC平移得到的,
EDACEDAC=6.
又∵ BEAC,
BEED
S四邊形PQEDSQEOS四邊形POEDSPBOS四邊形POEDSBED
=×BE×ED=×8×6=24.          ……………4分
②如圖,當點PBC上運動,使以點P、QR為頂點的三角形與△COB相似.
∵∠2是△OBP的外角,
∴∠2>∠3.
∴∠2不與∠3對應 .
∴∠2與∠1對應 .
即∠2=∠1,∴OP=OC="3" . 
OOGBCG,則GPC的中點 .
可證 △OGC∽△BOC .
CG:COCO:BC .
CG:3=3:5 .
CG= .
PBBCPCBC-2CG=5-2×= .
BDPBPRRFDFx++x+=10.
x=                               
BP= .         

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當∠BAC=90°時,求證:
PE
CE
=
1
2
;
(3)如圖2,當PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2

(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關系,并證明你的結論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關系,并加以證明.

查看答案和解析>>

同步練習冊答案