(2007•成都)在平面直角坐標系xOy中,已知一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標是   
【答案】分析:已知tan∠ABO=3就是已知一次函數(shù)的一次項系數(shù)是或-.根據(jù)函數(shù)經(jīng)過點P,利用待定系數(shù)法即可求得函數(shù)解析式,進而可得到A的坐標.
解答:解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,則一次函數(shù)y=kx+b中k=±
∵一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),
∴當k=時,求可得b=;
k=-時,求可得b=
即一次函數(shù)的解析式為y=x+或y=-x+
令y=0,則x=-2或4,
∴點A的坐標是(-2,0)或(4,0).
故答案為:(-2,0)或(4,0).
點評:本題考查求一次函數(shù)的解析式及交點坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2007•成都)在平面直角坐標系xOy中,已知一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•成都)在平面直角坐標系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,其頂點的橫坐標為1,且過點(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達式;
(2)若直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達式及點D的坐標;若不存在,請說明理由;
(3)若點P是位于該二次函數(shù)對稱軸右邊圖象上不與頂點重合的任意一點,試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出此時點P的橫坐標xp的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省泰州市姜堰市溱潼實驗學校九年級數(shù)學模擬試卷(解析版) 題型:填空題

(2007•成都)在平面直角坐標系xOy中,已知一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

(2007•成都)在平面直角坐標系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,其頂點的橫坐標為1,且過點(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達式;
(2)若直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達式及點D的坐標;若不存在,請說明理由;
(3)若點P是位于該二次函數(shù)對稱軸右邊圖象上不與頂點重合的任意一點,試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出此時點P的橫坐標xp的取值范圍.

查看答案和解析>>

同步練習冊答案