【題目】如圖,在平面直角坐標(biāo)系中,拋物線與,過點A(1,-3)作直線l∥y軸,交拋物線于點B,交拋物線于點C,則以下結(jié)論:
(1)拋物線與 y軸的交點坐標(biāo)為(0,1)
(2)若點D(-4,m)及點E(7,n)均在拋物線上,則m>n;
(3)若點B在點A的上方,則c>0;
(4)若BC=2,則c=3;
其中結(jié)論正確的是( )
A. (1)(2) B. (2)(3) C. (3)(4) D. (1)(4)
【答案】B
【解析】分析:(1)把x=0代入拋物線得到拋物線與y軸的交點;(2)根據(jù)點D,E離拋物線的對稱的距離的遠(yuǎn)近判斷;(3)根據(jù)點B的縱坐標(biāo)大于點A的縱坐標(biāo),列不等式判斷;(4)根據(jù)BC=2,列方程求解.
詳解:(1)當(dāng)x=0時,y=5,所以拋物線與y軸的交點坐標(biāo)為(0,5),則(1)錯誤;
(2)拋物線的對稱軸是x=2,開口向上,離對稱軸越遠(yuǎn)的點的函數(shù)值越大,因為7-2=5,2-(-4)=6,所以點D離對稱軸x=2更遠(yuǎn),即m>n,則(2)正確;
(3)把x=1代入得,
=1-4+c=c-3,即B(1,c-3),根據(jù)題意得,c-3>-3,即c>0.
則(3)正確;
(4)把x=1代入得,=2,則C(1,2),
所以BC=|c-3-2|=|c-5|.
根據(jù)題意得|c-5|=2,解得c=7或c=3.
則(4)錯誤.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D是 AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)要測量某煙囪的高度,他將一面鏡子放在他與煙囪之間的地面上某一位置,然后站到與鏡子、煙囪成一條直線的地方,剛好從鏡中看到煙囪的頂部,如果這名同學(xué)身高為1.65米,他到鏡子的距離是2米,測得鏡面到煙囪的距離為20米,煙囪的高度_____ 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點O以每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則 t的值為 秒(直接寫出結(jié)果).
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請求出差的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列邊長相等的正多邊形的組合中,不能鑲嵌平面的是( )
A.正三角形和正方形B.正三角形和正六邊形
C.正方形和正八邊形D.正五邊形和正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)小海喜歡研究數(shù)學(xué)問題,在計算整式加減(﹣4x2﹣7+5x)+(2x+3x2)的時候,想到了小學(xué)的列豎式加減法,令A=﹣4x2﹣7+5x,B=2x+3x2,然后將兩個整式關(guān)于x進(jìn)行降冪排列,A=﹣4x2+5x﹣7,B=3x2+2x,最后只要寫出其各項系數(shù)對齊同類項進(jìn)行豎式計算如下:
所以,(﹣4x2﹣7+5x)+(2x+3x2)=﹣x2+7x﹣7.
(模仿解題)若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,請你按照小海的方法,先對整式A,B關(guān)于某個字母進(jìn)行降冪排列,再寫出其各項系數(shù)進(jìn)行豎式計算A﹣B,并寫出A﹣B的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:①.
②﹣12020+24÷(﹣2)3﹣32×()2.
(2)化簡求值:①
②先化簡,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.
(3)解方程:① 3(x﹣3)+1 = x﹣(2x﹣1)
②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50元/人,非節(jié)假日打折售票,節(jié)假日按團(tuán)隊人數(shù)分段定價售票,即人以下(含人)的團(tuán)隊按原價售票;超過人的團(tuán)隊,其中人仍按原價售票,超過人部分的游客打折售票.設(shè)某旅游團(tuán)人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).與之間的函數(shù)圖象如圖所示.
(1)觀察圖象可知: ; ; ;
(2)直接寫出,與之間的函數(shù)關(guān)系式;
(3)某旅行社導(dǎo)游王娜于5月1日帶團(tuán),5月20日(非節(jié)假日)帶團(tuán)都到該景區(qū)旅游,共付門票款1900元,,兩個團(tuán)隊合計50人,求,兩個團(tuán)隊各有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com