【題目】如圖,的直徑,、的切線,切點分別為、,過點,于點,交于點

求證:的切線;

,,求陰影部分的面積.(結(jié)果保留

【答案】(1)詳見解析;(2)

【解析】

(1)首先作OHCD,垂足為H,由BC、AD是⊙O的切線,易證得BOC≌△AOE(ASA),繼而可得ODCE的垂直平分線,則可判定DC=DE,即可得OD平分∠CDE,則可得OH=OA,證得CD是⊙O的切線;

(2)首先證得AOE∽△ADO,然后由相似三角形的對應(yīng)邊成比例,求得OA的長,然后利用三角函數(shù)的性質(zhì),求得∠DOA的度數(shù),繼而求得答案.

(1),垂足為,

、的切線,

,

中,,

,

又∵,

,

,

,

的切線;

,

又∵,

,

,

,

,,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:內(nèi)接于,過點作直線,為非直徑的弦,且的切線

求證:

,,連接并延長交于點,求由弧、線段所圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A90°,DAC上一點,EBC上一點,點A和點E關(guān)于BD對稱,點B和點C關(guān)于DE對稱.求∠ABC和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從南京站開往上海站的一輛和諧號動車,中途只?刻K州站,甲、乙、丙名互不相識的旅客同時從南京站上車.

求甲、乙、丙三名旅客在同一個站下車的概率;

求甲、乙、丙三名旅客中至少有一人在蘇州站下車的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ABAC20cm,BC16cm,點DAB的中點.

1)如果點P在線段BC上以6cm/s的速度由B點向C點運動,同時點Q在線段CA上由CA點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使BPDCQP全等?

2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以正方形的頂點為圓心的弧恰好與對角線相切,以頂點為圓心,正方形的邊長為半徑的弧,已知正方形的邊長為,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時,對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.下列判斷:當(dāng)x0時,y1>y2;②當(dāng)x0時,x值越大,M值越大;使得M大于2的x值不存在;使得M=1的x值是﹣.其中正確結(jié)論的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的高為ADA'B'C'的高為A'D',且A'D'AD.現(xiàn)有①②③三個條件:

①∠B=∠B',∠C=∠C';

②∠B=∠B',ABA'B';

BCB'C',ABA'B'

分別添加以上三個條件中的一個,如果能判定ABC≌△A'B'C',寫出序號,并畫圖證明;如果不能判定ABC≌△A'B'C',寫出序號,并畫出相應(yīng)的反例圖形.

查看答案和解析>>

同步練習(xí)冊答案