如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標(biāo);
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.
①∵函數(shù)的圖象與x軸相交于O,
∴0=k+1,
∴k=-1,
∴y=x2-3x,

②假設(shè)存在點B,過點B做BD⊥x軸于點D,
∵△AOB的面積等于6,
1
2
AO•BD=6,
當(dāng)0=x2-3x,
x(x-3)=0,
解得:x=0或3,
∴AO=3,
∴BD=4
即4=x2-3x,
解得:x=4或x=-1(舍去).
又∵頂點坐標(biāo)為:(1.5,-2.25).
∵2.25<4,
∴x軸下方不存在B點,
∴點B的坐標(biāo)為:(4,4);

③∵點B的坐標(biāo)為:(4,4),
∴∠BOD=45°,BO=
42+42
=4
2
,
當(dāng)∠POB=90°,
∴∠POD=45°,
設(shè)P點橫坐標(biāo)為:x,則縱坐標(biāo)為:x2-3x,
即-x=x2-3x,
解得x=2或x=0,
∴在拋物線上僅存在一點P(2,-2).
∴OP=
22+22
=2
2
,
使∠POB=90°,
∴△POB的面積為:
1
2
PO•BO=
1
2
×4
2
×2
2
=8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(個008•棗莊)在直角坐標(biāo)平面中,O為坐標(biāo)原點,二次函數(shù)y=-x+(k-1)x+4的圖象與y軸交于點A,與x軸的負半軸交于點B,且S△OAB=a.
(1)求點A與點B的坐標(biāo);
(個)求此二次函數(shù)的解析式;
(3)如果點d在x軸上,且△ABd是等腰三角形,求點d的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線y=x2-2x與直線y=3相交于點A、B,P是x軸上一點,若PA+PB最小,則點P的坐標(biāo)為( 。
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2+2x-3與x軸的兩個交點分別為A、B,點A在點B的左側(cè),與y軸交于點C,頂點為D,直線y=kx+b經(jīng)過點A、C;
(1)求點D的坐標(biāo)和直線AC的解析式;
(2)點P為拋物線上的一個動點,求使得△ACP的面積與△ACD的面積相等的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=x2的頂點為P,A、B是拋物線上兩點,ABx軸,四邊形ABCD為矩形,CD邊經(jīng)過點P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時,矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MNBC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時,⊙O與直線BC相切;
(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場將進貨價為30元的臺燈以40元售出,平均每月能售出600個.市場調(diào)研表明:當(dāng)銷售價為每上漲1元時,其銷售量就將減少10個.商場要想銷售利潤平均每月達到最大,每個臺燈的定價應(yīng)為多少元?這時應(yīng)進臺燈多少個?月銷售利潤最大為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
3
3
x2+
2
3
3
x-
3
交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求點A、B、C的坐標(biāo);
(2)把△ABC繞AB的中點M旋轉(zhuǎn)180°,得到四邊形AEBC,求E點的坐標(biāo);
(3)試判斷四邊形AEBC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設(shè)AB邊長為x米,則菜園的面積y(米2)與x(米)的關(guān)系式為______.(不要求寫出自變量x的取值范圍)

查看答案和解析>>

同步練習(xí)冊答案