如圖,梯形ABCD中AD∥BC,對角線AC、BD相交于點(diǎn)O,若AO:CO=2:3,AD=4,則BC等于


  1. A.
    12
  2. B.
    8
  3. C.
    7
  4. D.
    6
D
分析:先根據(jù)相似三角形的判定定理得出△AOD∽△COB,再由相似三角形的對應(yīng)邊成比例即可得出BC的長.
解答:∵梯形ABCD中AD∥BC,
∴∠ADO=∠OBC,∠AOD=∠BOC,
∴△AOD∽△COB,
∵AO:CO=2:3,AD=4,
===,
解得BC=6.
故選D.
點(diǎn)評:本題考查的是相似三角形的判定與性質(zhì),先根據(jù)相似三角形的判定定理得出△AOD∽△COB是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊答案