(1997•新疆)半徑為R的同一圓的內(nèi)接正六邊形與外切正六方形的面積比是
3:4
3:4
分析:經(jīng)過(guò)圓心O作圓的內(nèi)接正n邊形的一邊AB的垂線OC,垂足是C.連接OA,則在直角△OAC中,∠AOC=
1
2
×
180°
n
=30°.OC是邊心距R,OA即半徑
2
3
3
R,進(jìn)而得出面積之比.
解答:解:經(jīng)過(guò)圓心O作圓的內(nèi)接正n邊形的一邊AB的垂線OC,垂足是C.連接OA,
∵在直角△OAC中,∠AOC=
1
2
×
180°
n
=30,
∴外切正6邊形的邊心距OC等于R,邊長(zhǎng)=2OCtan30°=
2
3
3
R,
內(nèi)接正六邊形的邊長(zhǎng)=R,邊心距等于
3
2
R,
∴外切正六邊形與內(nèi)接正六邊形的面積之比為:6×
3
2
R2:6×
2
3
3
R2=3:4.
故答案為:3:4.
點(diǎn)評(píng):此題主要考查了正多邊形和園,解決本題的關(guān)鍵是構(gòu)造相應(yīng)的直角三角形,得到分割的三角形的底邊和高,進(jìn)而求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•福州)半徑為6cm,圓心角為120°的扇形面積為
12π
12π
cm2.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•重慶)半徑為3和2的兩圓,已知這兩圓連心線的延長(zhǎng)線與一條外公切線的夾角為30°,則兩圓的位置關(guān)系是
相交
相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•新疆)如圖,⊙O的半徑為6cm,弦AB垂直平分半徑OC于點(diǎn)D,則弦AB的長(zhǎng)為
6
3
6
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•新疆)已知如圖⊙A和⊙B外切于點(diǎn)P,它們的半徑分別為R和r,CD是它們的外公切線,切點(diǎn)分別為C、D,且
CP
的弧長(zhǎng)為1.
(1)求證:S陰影=
(CD-1)R+r•CD
2

(2)當(dāng)R=6cm,r=2cm時(shí),求S陰影.

查看答案和解析>>

同步練習(xí)冊(cè)答案