如圖,在△ABC中,AB=BC,⊙O是△ABC的內(nèi)切圓,它與AB,BC,CA分別相切于點D、E、F.
(1)求證:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半徑.
(1)證明見解析;(2).
【解析】
試題分析:(1)利用切線長定理得出AD=AF,BD=BE,CE=CF,進而得出BD=CF,即可得出答案;
(2)首先連接OD、OE,進而利用切線的性質(zhì)得出∠ODA=∠OFA=∠A=90°,進而得出四邊形ODAF是正方形,再利用勾股定理求出⊙O的半徑.
試題解析:(1)∵⊙O是△ABC的內(nèi)切圓,切點為D、E、F, ∴AD=AF,BD=BE,CE=CF.
∵AB=AC,∴AB-AD=AC-AF,即BD=CF.
∴BE=CE.
(2)如圖,連接OD、OF,
∵⊙O是△ABC的內(nèi)切圓,切點為D、E、F,∴∠ODA=∠OFA=∠A=90°.
又OD=OF,∴四邊形ODAF是正方形.
設OD=AD=AF=r,則BE=BD=CF=CE=.
在△ABC中, ∠A=90°,∴.
又BC=BE+CE,∴ ,解得:r=.
∴⊙O的半徑是.
考點:1. 三角形的內(nèi)切圓與內(nèi)心;2. 正方形的判定和性質(zhì);3.勾股定理.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com