四邊形ABCD的對角線AC與BD互相平分,且相交于點O、在不添加其它線條的前提下,要使四邊形ABCD為矩形,還需添加一個條件,這個條件可以是________(填一個即可).

AC=BD(答案不唯一),∠BAD=90°,OA=OB,∠BAD=∠ADC
分析:因為四邊形ABCD的對角線AC與BD互相平分,所以可判斷其為平行四邊形,因此只需再加上對角線相等即可,也可使一個角為直角均可.
解答:由題意,添加AC=BD即可.
理由:對角線相等的平行四邊形是矩形,答案不唯一.
點評:掌握矩形的判定定理是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準外心.那么你認為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是
15
15

查看答案和解析>>

科目:初中數(shù)學 來源:1+1輕巧奪冠·優(yōu)化訓練·八年級數(shù)學下 題型:013

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關系為

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關系為


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步練習冊答案