16.計算:
(1)($\frac{2}{3}$-$\frac{3}{4}$+$\frac{1}{6}$)÷(-$\frac{1}{24}$)(用簡便方法);
(2)-23-(-1-$\frac{1}{2}$)÷3×[3-(-3)2].

分析 (1)應(yīng)用乘法分配律,求出算式的值是多少即可.
(2)根據(jù)有理數(shù)的混合運算的運算方法,求出算式的值是多少即可.

解答 解:(1)($\frac{2}{3}$-$\frac{3}{4}$+$\frac{1}{6}$)÷(-$\frac{1}{24}$)
=$\frac{2}{3}$×(-24)-$\frac{3}{4}$×(-24)+$\frac{1}{6}$×(-24)
=-16+18-4
=-2

(2)-23-(-1-$\frac{1}{2}$)÷3×[3-(-3)2]
=-8-(-$\frac{3}{2}$)÷3×[3-9]
=-8+$\frac{1}{2}$×[-6]
=-8-3
=-11

點評 此題主要考查了有理數(shù)的混合運算,要熟練掌握,注意明確有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應(yīng)按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.在不透明的布袋里,裝有紅、黃、藍三種除顏色外其余都相同的小球,其中有紅球2個,籃球1個,黃球若干個,從中任意摸出一球是紅球的概率為$\frac{1}{2}$.
(1)口袋中黃球的個數(shù)是1;
(2)小東先隨機摸出一個球(不放回),再隨機摸出一球,請用“畫樹狀圖”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍球得2分(每次摸后不放回),小明在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機再摸一次,求他三次摸球所得分數(shù)之和不低于10分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.某校九(1)班所有學(xué)生參加2015年初中畢業(yè)生體育考試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的體育成績進行統(tǒng)計后分為A,B,C,D四個等級,并繪制成如圖所示的不完全的條形統(tǒng)計圖和扇形統(tǒng)計.
根據(jù)圖中所給信息,解答下列問題:
(1)九(1)班參加體育測試的學(xué)生有多少人?
(2)等級B部分所占的圓心角的度數(shù);
(3)將條形統(tǒng)計圖補充完整;
(4)若該校九年級學(xué)生共有850人參加體育測試,估計達到A級和B級的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC與△OCD中,∠ACB=∠DCO=90°,O為AB的中點.
(1)求證:∠B=∠ACD;
(2)已知點E在AB上,且BC2=AB•BE;
①證明:CD與以A為圓心、AE為半徑的⊙A相切;
②若tan∠ACD=$\frac{3}{4}$,BC=10,求CE的長,設(shè)①中的⊙A與DB交于點M,直接寫出DM=$\frac{81}{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的方程(k2-1)x2+(2k+1)x+1=0.
(1)若方程有實數(shù)根,求k的取值范圍;
(2)若方程有兩個互為相反數(shù)的實數(shù)根,求k的值,并求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知CE∥BA,并且點B、C、D三點在同一直線上,你能利用平行線的性質(zhì)去說明∠A+∠B+∠ACB=180°嗎?由此你能歸納出關(guān)于三角形三個內(nèi)角之和的特性嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,BC∥B1C1,CD∥C1D1,DE∥D1E1,∠BCD=118°,∠CDE=119°,求∠B1C1D1及∠C1D1E1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.問題提出:(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面請你完成余下的證明過程)
問題探究:(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
解決問題:(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當(dāng)∠AMN=$\frac{(n-2)180°}{n}$時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.某市市區(qū)去年年底電動車擁有量是10萬輛,為了緩解城區(qū)交通擁堵狀況,今年年初,市交通部門要求到明年年底控制電動車擁有量不超過11.9萬輛,如果每年底報廢的電動車數(shù)量是上一年年底電動車擁有量的10%,且每年新增電動車數(shù)量相同,問:從今年年初起每年新增電動車數(shù)量最多是多少萬輛?

查看答案和解析>>

同步練習(xí)冊答案