【題目】如圖1,在平面直角坐標(biāo)系xoy中,二次函數(shù)的圖象與x軸的交點(diǎn)為A,B,頂點(diǎn)為C,點(diǎn)D為點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn),過(guò)點(diǎn)A作直線lBD于點(diǎn)E,連接BC的直線交直線lK點(diǎn).

1)問(wèn):在四邊形ABKD內(nèi)部是否存在點(diǎn)P,使它到四邊形ABKD四邊的距離都相等?

若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

2)若M,N分別為直線AD和直線l上的兩個(gè)動(dòng)點(diǎn),連結(jié)DN,NM,MK,如圖2,求DN+NM+MK和的最小值.

【答案】(1) 四邊形ABCD內(nèi)部存在點(diǎn)P2)到四邊形ABCD四邊的距離相等;(28.

【解析】

1)由拋物線解析式求點(diǎn)AB、C、D的坐標(biāo),求直線BC解析式,把直線BC與直線l的解析式聯(lián)立方程組,求得的解為點(diǎn)K坐標(biāo),因此求得AB=BK=KD=AD=4,即四邊形ABKD為菱形.由菱形性質(zhì)可知對(duì)角線平分一組對(duì)角,故對(duì)角線AK、BD交點(diǎn)E在菱形四個(gè)內(nèi)角的平分線上,所以點(diǎn)E到四邊距離相等,即為符合題意的點(diǎn)P

2)由菱形性質(zhì)可知點(diǎn)B、D關(guān)于直線AK對(duì)稱,故有DN=BN,所以當(dāng)點(diǎn)B、NM在同一直線上時(shí),DN+MN=BN+MN=BM最。鼽c(diǎn)K關(guān)于直線AD對(duì)稱點(diǎn)Q,得MK=MQ,所以當(dāng)點(diǎn)Q、M、B在同一直線上時(shí),BM+MK=BM+MQ=BQ最小,即BQ的長(zhǎng)為DN+NM+MK的最小值.由AK平分∠DAB可求得點(diǎn)K到直線AD距離等于點(diǎn)K的縱坐標(biāo),進(jìn)而求得KQ的長(zhǎng);再由BKAD得∠BKQ=DRQ=90°,利用勾股定理即求得BQ的長(zhǎng).

1)在四邊形ABKD內(nèi)部存在點(diǎn)P到四邊形ABKD四邊的距離都相等.

當(dāng)y=0時(shí),

解得:x1=-1,x2=3

A-1,0),B3,0),AB=4

∴頂點(diǎn)C1,-2

∵點(diǎn)D為點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)

D12),

設(shè)直線BC解析式為y=bx+c

, 解得:

∴直線BC

,解得:

K52

,DKx軸,DK=5-1=4

AB=BK=DK=AD=4

∴四邊形ABKD是菱形

∴對(duì)角線AK、BD平分一組對(duì)角,

AK、BD交點(diǎn)E1,)到菱形四邊距離相等

∴點(diǎn)P與點(diǎn)E重合時(shí),即符合題意的點(diǎn)

∴在四邊形ABKD內(nèi)部存在點(diǎn)P1,)到四邊形ABKD四邊的距離都相等.

2)過(guò)點(diǎn)KKFx軸于點(diǎn)F,作點(diǎn)K關(guān)于直線AD的對(duì)稱點(diǎn)Q,KQ與直線AD相交于點(diǎn)R,連接MQ、QB、NB

∵菱形ABKD中,AKBD互相垂直平分

∴點(diǎn)B、D關(guān)于直線AK對(duì)稱

DN=BN

∴當(dāng)點(diǎn)B、N、M在同一直線上時(shí),DN+NM=BN+NM=BM最小

∵點(diǎn)KQ關(guān)于直線AD對(duì)稱

KQADQR=KR,MK=MQ

∴當(dāng)點(diǎn)Q、M、B在同一直線上時(shí),BM+MK=BM+MQ=BQ最小

BQ的長(zhǎng)為DN+NM+MK的最小值

AK平分∠DAB,KFABKRAD,yK=2

KF=KR=2

KQ=2KR=4

BKAD

∴∠BKQ=DRQ=90°

RtBKQ中,BQ=

DN+NM+MK和的最小值為8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,半圓的直徑.點(diǎn)與點(diǎn)重合,半圓的速度從左向右移動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)始終在所在的直線上.設(shè)運(yùn)動(dòng)時(shí)間為,半圓的重疊部分的面積為

1)當(dāng)時(shí),設(shè)點(diǎn)是半圓上一點(diǎn),點(diǎn)是線段上一點(diǎn),則的最大值為_________;的最小值為________

2)在平移過(guò)程中,當(dāng)點(diǎn)的中點(diǎn)重合時(shí),求半圓重疊部分的面積;

3)當(dāng)為何值時(shí),半圓的邊所在的直線相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將線段 AB 先向右平移 5 個(gè)單位,再將所得線段繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn) 90°,得到線段 AB ,則點(diǎn) B 的對(duì)應(yīng)點(diǎn) B′的坐標(biāo)是(

A.-4 , 1B. 1, 2C.4 ,- 1D.1 ,- 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ACD90°,ACDC,MN是過(guò)點(diǎn)A的直線,DBMN于點(diǎn)B

1)如圖,求證:BD+ABBC;

2)直線MN繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)∠BCD30°BD時(shí),求BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的漢字聽(tīng)寫(xiě)大賽.為了解本次大賽的成績(jī),學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

成績(jī)x(分)分?jǐn)?shù)段

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數(shù)分布直方圖

根據(jù)所給的信息,回答下列問(wèn)題:

1m=________n=________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在________分?jǐn)?shù)段;

4)若成績(jī)?cè)?/span>90分以上(包括90分)為優(yōu)等,請(qǐng)你估計(jì)該校參加本次比賽的2000名學(xué)生中成績(jī)是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小蕓設(shè)計(jì)的“過(guò)圓外一點(diǎn)作已知圓的切線”的尺規(guī)作圖過(guò)程.

已知:⊙O 及⊙O 外一點(diǎn) P

求作:⊙O 的一條切線,使這條切線經(jīng)過(guò)點(diǎn) P

作法:①連接 OP,作 OP 的垂直平分線 l,交 OP 于點(diǎn) A

②以 A 為圓心,AO 為半徑作圓,交⊙O 于點(diǎn) M;

③作直線 PM,則直線 PM 即為⊙O 的切線.

根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:連接 OM

由作圖可知,A OP 中點(diǎn),

OP 為⊙A 直徑,

∴∠ 90°( )(填推理的依據(jù))

OMPM

又∵點(diǎn) M 在⊙O 上,

PM 是⊙O 的切線.( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊中,D為邊AC的延長(zhǎng)線上一點(diǎn)(),平移線段BC,使點(diǎn)C移動(dòng)到點(diǎn)D,得到線段EDMED的中點(diǎn),過(guò)點(diǎn)MED的垂線,交BC于點(diǎn)F,交AC于點(diǎn)G

1)依題意補(bǔ)全圖形;

2)求證:;

3)連接DF并延長(zhǎng)交AB于點(diǎn)H,用等式表示線段AHCG的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過(guò)點(diǎn)和點(diǎn),函數(shù)圖象最低點(diǎn)的縱坐標(biāo)為.直線的解析式為

求二次函數(shù)的解析式;

直線沿軸向右平移,得直線與線段相交于點(diǎn),與軸下方的拋物線相交于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),把沿直線折疊,當(dāng)點(diǎn)恰好落在拋物線上點(diǎn)時(shí)(求直線的解析式;

的條件下,軸交于點(diǎn),把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,P上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),求符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以RtABC的斜邊BC為一邊在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案