正方形ABCD中,E、F分別為AB、BC的中點(diǎn),AF與DE相交于點(diǎn)O,則=   
【答案】分析:本題可通過相似三角形求解,根據(jù)所求的條件可判斷出需證明△OAE∽△ADE,已知了公共角∠OEA,缺少∠OAE=∠ADE的條件;因此可通過證△ADE和△BAF全等來得出∠OAE=∠ADE,由此可得解.
解答:解:∵AD=AB,AE=BF,∠DAE=∠B=90°;
∴△ADE≌△BAF(SAS);
∴∠ADE=∠OAE;
又∵∠OEA=∠AED,
∴△OAE∽△ADE;

點(diǎn)評:此題綜合考查三角形全等的判定和相似三角形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•臨沂)如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時出發(fā),以1cm/s的速度沿BC,CD運(yùn)動,到點(diǎn)C,D時停止運(yùn)動,設(shè)運(yùn)動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在正方形ABCD中,M為AD中點(diǎn),N為CD中點(diǎn),試求tan∠MBN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在邊長為1的正方形ABCD中,點(diǎn)M、N、O、P分別在邊AB、BC、CD、DA上.如果AM=BM,DP=3AP,則MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,畫2個半徑為a的四分之一圓,用代數(shù)式表示陰影部分的面積為
2a2-
1
2
πa2
2a2-
1
2
πa2
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,AB=4,E在BC邊上,BE=1,F(xiàn)是AC上一動點(diǎn),則EF+BF的最小值是
5
5

查看答案和解析>>

同步練習(xí)冊答案