【題目】汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x(元) | 3000 | 3200 | 3500 | 4000 |
y(輛) | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),求按照表格呈現(xiàn)的規(guī)律,每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)(輛) | ________ | 未租出的車輛數(shù)(輛) | ________ |
租出每輛車的月收益(元) | ________ | 所有未租出的車輛每月的維護(hù)費(fèi)(元) | ________ |
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)說(shuō)明理由.
【答案】(1)y與x間的函數(shù)關(guān)系是y=-x+160;(2)填表見(jiàn)解析;(3)當(dāng)每輛車的月租金為4050元時(shí),公司獲得最大月收益307050元.
【解析】
試題(1)判斷出y與x的函數(shù)關(guān)系為一次函數(shù)關(guān)系,再根據(jù)待定系數(shù)法求出函數(shù)解析式。
(2)根據(jù)題意可用代數(shù)式求出出租車的輛數(shù)和未出租車的輛數(shù)即可;
(3)租出的車的利潤(rùn)減去未租出車的維護(hù)費(fèi),即為公司最大月收益.
試題解析:(1)由表格數(shù)據(jù)可知y與x是一次函數(shù)關(guān)系,
設(shè)其解析式為y=kx+b,
則有:,解得: ,
∴y與x間的函數(shù)關(guān)系是y=-x+160;
(2)租出的車輛數(shù):﹣x+160,
未租出的車輛數(shù):100-(﹣x+160)= x﹣60,
租出每輛車的收益:x﹣150,
所有未租出車的維護(hù)費(fèi):50(x﹣60)=x﹣3000,
故填表如下:
租出的車輛數(shù)(輛) | ﹣x+160 | 未租出的車輛數(shù)(輛) | x﹣60 |
租出每輛車的月收益(元) | x﹣150 | 所有未租出的車輛每月的維護(hù)費(fèi)(元) | x﹣3000 |
(3)設(shè)租賃公司獲得的月收益為W元,依題意可得:
W=(﹣ +160)(x﹣150)﹣(x﹣3000)
=(﹣ x2+163x﹣24000)﹣(x﹣3000)
=﹣ x2+162x﹣21000
=﹣ (x﹣4050)2+307050
當(dāng)x=4050時(shí),Wmax=307050,
即:當(dāng)每輛車的月租金為4050元時(shí),公司獲得最大月收益307050元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,DH⊥BC于H,交BE于G,下列結(jié)論中正確的是( )
①△BCD為等腰三角形;②BF=AC;③CE=BF;④BH=CE.
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市城市綠化工程招標(biāo),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,再由甲、乙合作12天,共完成總工作量的三分之二.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工l天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元,該工程由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余工作,若要求完成此項(xiàng)工程的工程款不超過(guò)186萬(wàn)元,求甲、乙兩隊(duì)最多合作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)
如圖,用兩段等長(zhǎng)的鐵絲恰好可以分別圍成一個(gè)正五邊形和一個(gè)正六邊形,其中正五邊形的邊長(zhǎng)為(),正六邊形的邊長(zhǎng)為()cm(其中),求這兩段鐵絲的總長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=與y=-kx2+k(k≠0)在同一坐標(biāo)系中圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想測(cè)山高和索道的長(zhǎng)度.他在B處仰望山頂A,測(cè)得仰角∠B=31°,再往山的方向(水平方向)前進(jìn)80 m至索道口C處,沿索道方向仰望山頂,測(cè)得仰角∠ACE=39°.
(1)求這座山的高度(小明的身高忽略不計(jì));
(2)求索道AC的長(zhǎng)(結(jié)果精確到0.1 m).
(參考數(shù)據(jù):tan31°≈,sin31°≈,tan39°≈,sin39°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測(cè)得塔頂B的仰角為45°,在樓頂D處測(cè)得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
(參考數(shù)據(jù):sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形中,點(diǎn),,分別為各邊中點(diǎn),為直線上一動(dòng)點(diǎn),為等邊三角形(點(diǎn)的位置改變時(shí),也隨之整體移動(dòng)).
(1)如圖1,當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),請(qǐng)判斷與有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)在上時(shí),其它條件不變,(1)的結(jié)論中與的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)在點(diǎn)右側(cè)時(shí),請(qǐng)你在圖3中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中與的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.(提示:連接、、.可證、、、均為等邊三角形).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com