(2005•泰州)如圖,AB切⊙O于點B,OA交⊙O于C點,過C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及的長.

【答案】分析:(1)易知DB、DC都是⊙O的切線,由切線長定理可得DB=DC,那么結(jié)合已知條件則有:DC:AD=1:2;即Rt△ACD中,sinA=,由此可求出∠A的度數(shù),進而可的∠A的正切值.
(2)連接OB.在構(gòu)建的含30°角的Rt△OBA中,已知了OB=OC=1,可求出AB的長及∠BOC的度數(shù);進而可根據(jù)弧長公式求出弧BC的長.
解答:解:(1)(方法一)∵DC⊥OA,OC為半徑.
∴DC為⊙O的切線;
∵AB為⊙O的切線,∴DC=DB;
在Rt△ACD中,
∵sinA=,BD:AD=1:2,
∴sinA=;∴∠A=30°,
∴tanA=
(方法二)∵DC⊥OA,OC為半徑.
∴DC為⊙O的切線;
∵AB為⊙O的切線,∴DC=DB;
∵BD:AD=1:2,∴CD:AD=1:2;
∴設(shè)CD=k,AD=2k;
∴AC=k;
∴tanA==

(2)連接OB;
∵AB是⊙O的切線,
∴OB⊥AB.
在Rt△AOB中,
∵tanA=,OB=1;
∴AB=
∵∠A=30°,∴∠O=60°;
的長=
點評:掌握切線的判定方法,綜合運用切線長定理、勾股定理以及銳角三角函數(shù)的概念進行計算;熟悉30°的直角三角形的性質(zhì)以及弧長公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•泰州)如圖是泰州某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中(如圖).

(1)求拋物線的解析式;(2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市實驗中學(xué)高一直升考試數(shù)學(xué)試卷 (解析版) 題型:解答題

(2005•泰州)如圖是泰州某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中(如圖).

(1)求拋物線的解析式;(2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•泰州)如圖是泰州某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中(如圖).

(1)求拋物線的解析式;(2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2005•泰州)如圖,機器人從A點,沿著西南方向,行了4個單位到達B點后,觀察到原點O在它的南偏東60°的方向上,則原來A的坐標(biāo)為    (結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:選擇題

(2005•泰州)如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( )

A.4
B.6
C.8
D.10

查看答案和解析>>

同步練習(xí)冊答案