【題目】問題探究

(1)如圖,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P,求APB周長(zhǎng)的最大值;

問題解決

(3)如圖,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P.求APB周長(zhǎng)的最大值.

【答案】(1)結(jié)論:AMBN2APB周長(zhǎng)的最大值=4+43PAB的周長(zhǎng)最大值=2+4

【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;

(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;

(3)如圖③,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.

試題解析:(1)結(jié)論:AM⊥BN.

理由:如圖①中,

∵四邊形ABCD是正方形,

∴AB=BC,∠ABM=∠BCN=90°,

∵BM=CN,

∴△ABM≌△BCN,

∴∠BAM=∠CBN,

∵∠CBN+∠ABN=90°,

∴∠ABN+∠BAM=90°,

∴∠APB=90°,

∴AM⊥BN.

(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP.

∵∠EFP=∠FPG=∠G=90°,

∴四邊形EFPG是矩形,

∴∠FEG=∠AEB=90°,

∴∠AEF=∠BEG,

∵EA=EB,∠EFA=∠G=90°,

∴△AEF≌△BEG,

∴EF=EG,AF=BG,

∴四邊形EFPG是正方形,

∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,

∵EF≤AE,

∴EF的最大值=AE=2

∴△APB周長(zhǎng)的最大值=4+4

(3)如圖③中,延長(zhǎng)DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.

∵AB=BC,∠ABM=∠BCN,BM=CN,

∴△ABM≌△BCN,

∴∠BAM=∠CBN,

∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,

∴∠APB=120°,

∵∠AKB=60°,

∴∠AKB+∠APB=180°,

∴A、K、B、P四點(diǎn)共圓,

∴∠BPH=∠KAB=60°,

∵PH=PB,

∴△PBH是等邊三角形,

∴∠KBA=∠HBP,BH=BP,

∴∠KBH=∠ABP,∵BK=BA,

∴△KBH≌△ABP,

∴HK=AP,

∴PA+PB=KH+PH=PK,

∴PK的值最大時(shí),△APB的周長(zhǎng)最大,

∴當(dāng)PK是△ABK外接圓的直徑時(shí),PK的值最大,最大值為4,

∴△PAB的周長(zhǎng)最大值=2+4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖O為直線AB上一點(diǎn),∠AOC50°OD平分∠AOC,∠DOE90°

1)求∠BOD的度數(shù);

2)試判斷OE是否平分∠BOC,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將代數(shù)式中的任意兩個(gè)字母交換,代數(shù)式不變,則稱這個(gè)代數(shù)式為完全對(duì)稱式,如就是完全對(duì)稱式(代數(shù)式中換成bb換成,代數(shù)式保持不變).下列三個(gè)代數(shù)式:①;②;③.其中是完全對(duì)稱式的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校開展雙劇進(jìn)課堂的活動(dòng),該校童威隨機(jī)抽取部分學(xué)生,按四個(gè)類別:表示很喜歡表示喜歡,表示一般,表示不喜歡,調(diào)查他們對(duì)漢劇的喜愛情況,將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,解決下列問題:

1)這次共抽取_________名學(xué)生進(jìn)行統(tǒng)計(jì)調(diào)查,扇形統(tǒng)計(jì)圖中,類所對(duì)應(yīng)的扇形圓心角的大小為__________

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整

3)該校共有1500名學(xué)生,估計(jì)該校表示喜歡類的學(xué)生大約有多少人?

各類學(xué)生人數(shù)條形統(tǒng)計(jì)圖各類學(xué)生人數(shù)扇形統(tǒng)計(jì)圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖反映的過程是小明從家去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時(shí)間,y表示小明離他家的距離.根據(jù)圖象回答下列問題:

菜地離小明家多遠(yuǎn)?小明走到菜地用了多少時(shí)間?

小明給菜地澆水用了多少時(shí)間?

玉米地離菜地、小明家多遠(yuǎn)?小明從玉米地走回家平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列橫線上用含有,的代數(shù)式表示相應(yīng)圖形的面積.

1________;②__________;③__________;④_________________

2)通過拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表示:________________________________________.

3)利用(2)的結(jié)論計(jì)算1972+2×197×3+32的值.( 注意不利用以上結(jié)論不得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD是⊙O的兩條互相垂直的直徑,P為⊙O上一動(dòng)點(diǎn),過點(diǎn)P分別作PEAB、PFCD,垂足分別為E、FMEF的中點(diǎn).若點(diǎn)P從點(diǎn)B出發(fā),以每秒15°的速度按逆時(shí)針方向旋轉(zhuǎn)一周,當(dāng)∠MAB 取得最大值時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間為______秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1-40-28--19+-24
2)(-81)÷÷(-16
3-22÷(--1)×48
4-72+2×(-32--6)÷(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1-5+2-13+4
2)(-2)×(-8-9÷(-3
3)(-18)×(-
4--3 +12.5+-16+-2.5

查看答案和解析>>

同步練習(xí)冊(cè)答案