在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(-4,0),B(0,-4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(1)設(shè)拋物線解析式為y=a(x+4)(x-2),
將B(0,-4)代入得:-4=-8a,即a=
1
2
,
則拋物線解析式為y=
1
2
(x+4)(x-2)=
1
2
x2+x-4;

(2)過(guò)M作MN⊥x軸,
將x=m代入拋物線得:y=
1
2
m2+m-4,即M(m,
1
2
m2+m-4),
∴MN=|
1
2
m2+m-4|=-
1
2
m2-m+4,ON=-m,
∵A(-4,0),B(0,-4),∴OA=OB=4,
∴△AMB的面積為S=S△AMN+S梯形MNOB-S△AOB
=
1
2
×(4+m)×(-
1
2
m2-m+4)+
1
2
×(-m)×(-
1
2
m2-m+4+4)-
1
2
×4×4
=2(-
1
2
m2-m+4)-2m-8
=-m2-4m
=-(m+2)2+4,
當(dāng)m=-2時(shí),S取得最大值,最大值為4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)坐標(biāo)是(
5
2
,-
9
8
)
,且經(jīng)過(guò)點(diǎn)A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的任意一點(diǎn),分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,以BC為直徑的⊙M交x軸正半軸于點(diǎn)A、B,交y軸正半軸于點(diǎn)E、F,過(guò)點(diǎn)C作CD垂直y軸,垂足為點(diǎn)D,連接AM并延長(zhǎng)交⊙M于點(diǎn)P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過(guò)點(diǎn)B、C、E,且以C為頂點(diǎn),當(dāng)點(diǎn)B的橫坐標(biāo)等于2時(shí),四邊形OECB的面積是
11
4
,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線是y=
1
2
x-2
,連接AC.
(1)寫(xiě)出B、C兩點(diǎn)坐標(biāo),并求拋物線的解析式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFG(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
{拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)是(-
b
2a
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某果園有100棵橘子樹(shù),平均每一棵樹(shù)結(jié)600個(gè)橘子.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一顆樹(shù),平均每棵樹(shù)就會(huì)少結(jié)5個(gè)橘子.設(shè)果園增種x棵橘子樹(shù),果園橘子總個(gè)數(shù)為y個(gè),則果園里增種______棵橘子樹(shù),橘子總個(gè)數(shù)最多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,水平地面的A、B兩點(diǎn)處有兩棵筆直的大樹(shù)相距2米,小明的父親在這兩棵樹(shù)間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹(shù)0.5米時(shí),頭部剛好接觸到繩子.
(1)請(qǐng)完成如下操作:以AB所在直線為x軸、線段AB的垂直平分線為y軸,建立平面直角坐標(biāo)系,根據(jù)題中提供的信息,求繩子所在拋物線的函數(shù)關(guān)系式;
(2)求繩子的最低點(diǎn)離地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y1=2x2+
1
4
的頂點(diǎn)為M,直線y2=x,點(diǎn)P(n,0)為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線分別交拋物線y1=2x2+
1
4
和直線y2=x于點(diǎn)A,點(diǎn)B.
(1)直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo)(用含n的代數(shù)式表示);
(2)設(shè)線段AB的長(zhǎng)為d,求d關(guān)于n的函數(shù)關(guān)系式及d的最小值,并直接寫(xiě)出此時(shí)線段OB與線段PM的位置關(guān)系和數(shù)量關(guān)系;
(3)已知二次函數(shù)y=ax2+bx+c(a,b,c為整數(shù)且a≠0),對(duì)一切實(shí)數(shù)x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,EF是一面長(zhǎng)18米的墻,用總長(zhǎng)為32米的木柵欄(圖中的虛線)圍一個(gè)矩形場(chǎng)地,中間還要隔成三塊.設(shè)與墻頭垂直的邊AD長(zhǎng)為x米,
(1)用含x的代數(shù)式表示AB的長(zhǎng)為_(kāi)_____米;
(2)若要圍成的矩形面積為60米2,求AB的長(zhǎng);
(3)當(dāng)x為何值時(shí),矩形的面積S最大?是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為2,C1是函數(shù)的y=
1
2
x2
的圖象,C2是函數(shù)的y=-
1
2
x2
的圖象,C3是函數(shù)的y=x的圖象,則陰影部分的面積是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案