【題目】某政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元.銷售過(guò)程中發(fā)現(xiàn),月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+n.
(1)當(dāng)銷售單價(jià)x定為25元時(shí),李明每月獲得利潤(rùn)為w為1250元,則n=;
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?并求最大利潤(rùn)為多少元.
【答案】
(1)500
(2)解:由題意,得:w=(x﹣20) y,
=(x﹣20) (﹣10x+500)=﹣10x2+700x﹣10000,
令:﹣10x2+700x﹣10000=2000,
解這個(gè)方程得:x1=30,x2=40(舍).
答:李明想要每月獲得2000元的利潤(rùn),銷售單價(jià)應(yīng)定為30元
(3)解:由(2)知:w=﹣10x2+700x﹣10000,∴ .
∵﹣10<0,∴拋物線開(kāi)口向下.
∵x≤32∴w隨x的增大而增大.
∴當(dāng)x=32時(shí),w最大=2160.
答:銷售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為2160元
【解析】解:(1)∵y=﹣10x+n,當(dāng)銷售單價(jià)x定為25元時(shí),李明每月獲得利潤(rùn)為w為1250元,
∴則W=(25﹣20)×(﹣10×25+n)=1250,
解得:n=500;
故答案為:500.
(1)利潤(rùn)=銷售量乘以每件的利潤(rùn)可求出;
(2)由利潤(rùn)=銷售量乘以每件的利潤(rùn)(銷售量y=-10x+n)得到w關(guān)于x的二次函數(shù),再由w=2000得到關(guān)于x的一元二次方程,求解可得符合條件的x值;
(3)由(2)得到w關(guān)于x的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)可求出函數(shù)的定價(jià)和最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC=10,∠B=60°,∠C=45°,則點(diǎn)A到BC的距離是( )
A.10﹣5
B.5+5
C.15﹣5
D.15﹣10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2 , 交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C2017 . 若點(diǎn)P是第2016段拋物線的頂點(diǎn),則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家商店要進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可完成,需付兩組費(fèi)用共3480元,問(wèn):
(1)甲、乙兩組工作一天,商店應(yīng)各付多少元?
(2)已知甲組單獨(dú)做需12天完成,乙組單獨(dú)做需24天完成,單獨(dú)請(qǐng)哪組,商店所付費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初三綜合素質(zhì)評(píng)定結(jié)束后,為了了解年級(jí)的評(píng)定情況,現(xiàn)對(duì)初三某班的學(xué)生進(jìn)行了評(píng)定等級(jí)的調(diào)查,繪制了如下男女生等級(jí)情況折線統(tǒng)計(jì)圖和全班等級(jí)情況扇形統(tǒng)計(jì)圖.
(1)調(diào)查發(fā)現(xiàn)評(píng)定等級(jí)為合格的男生有2人,女生有1人,則全班共有名學(xué)生.
(2)補(bǔ)全女生等級(jí)評(píng)定的折線統(tǒng)計(jì)圖.
(3)根據(jù)調(diào)查情況,該班班主任從評(píng)定等級(jí)為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請(qǐng)用樹(shù)形圖或表格求出剛好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知在數(shù)軸上有A、 B兩點(diǎn),點(diǎn)A表示的數(shù)是-6,點(diǎn)B表示的數(shù)是9.點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1) AB=____ ;當(dāng)t=1時(shí),點(diǎn)Q表示的數(shù)是___ ;當(dāng)t=___時(shí),P、Q兩點(diǎn)相遇;
(2)如圖2,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)N為線段BP中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由.若不變,請(qǐng)求出線段MN的長(zhǎng);
(3)如圖3,若點(diǎn)M為線段的AP中點(diǎn),點(diǎn)T為線段BQ中點(diǎn),則點(diǎn)M表示的數(shù)為______;點(diǎn)T表示的數(shù)為______;MT=______ (用含t的代數(shù)式填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D,E 分別在邊 AC,AB 上,BD 與 CE 交于點(diǎn) O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC 是等腰三角形?(用序號(hào)寫(xiě)出所有成立的情形)
(2)請(qǐng)選擇(1)中的一種情形,寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=2,BF=8,BC=AE=6,CE=CF=7,則△CDF與四邊形ABDE的面積比值是( )
A. 1:1 B. 2:1 C. 1:2 D. 2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1)、B(﹣3,2)、C(﹣1,4).
①以原點(diǎn)O為位似中心,在第二象限內(nèi)畫(huà)出將△ABC放大為原來(lái)的2倍后的△A1B1C1 .
②畫(huà)出△ABC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com