(2009•西城區(qū)一模)某運(yùn)輸公司用10輛相同的汽車(chē)將一批蘋(píng)果運(yùn)到外地,每輛汽車(chē)能裝8噸甲種蘋(píng)果,或10噸乙種蘋(píng)果,或11噸丙種蘋(píng)果.公司規(guī)定每輛車(chē)只能裝同一種蘋(píng)果,而且必須滿(mǎn)載.已知公司運(yùn)送了甲、乙、丙三種蘋(píng)果共100噸,且每種蘋(píng)果不少于一車(chē).
(1)設(shè)用x輛車(chē)裝甲種蘋(píng)果,y輛車(chē)裝乙種蘋(píng)果,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若運(yùn)送三種蘋(píng)果所獲利潤(rùn)的情況如下表所示:
蘋(píng)果品種
每噸蘋(píng)果所獲利潤(rùn)(萬(wàn)元)0.220.210.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車(chē)輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).
【答案】分析:(1)根據(jù)“甲、乙、丙三種蘋(píng)果共100噸”列二元一次方程,變形后得出y與x之間的關(guān)系式為y=-3x+10.
根據(jù)實(shí)際意義即y≥1,x≥1,得到x的取值范圍是x=1或x=2或x=3;
(2)寫(xiě)出利潤(rùn)與x之間的函數(shù)關(guān)系:W=-0.14x+21,根據(jù)W隨x的增大而減小,所以x取1時(shí),可獲得最大利潤(rùn)20.86萬(wàn)元.
得出最佳的運(yùn)輸方案.
解答:解:(1)∵8x+10y+11(10-x-y)=100,
∴y與x之間的函數(shù)關(guān)系式為y=-3x+10.
∵y≥1,解得x≤3.
∵x≥1,10-x-y≥1,且x是正整數(shù),
∴自變量x的取值范圍是x=1或x=2或x=3.

解:(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.
因?yàn)閃隨x的增大而減小,所以x取1時(shí),可獲得最大利潤(rùn),
此時(shí)W=20.86(萬(wàn)元).
獲得最大運(yùn)輸利潤(rùn)的方案為:用1輛車(chē)裝甲種蘋(píng)果,用7輛車(chē)裝乙種蘋(píng)果,2輛車(chē)裝丙種蘋(píng)果.
點(diǎn)評(píng):主要考查利用一次函數(shù)的模型解決實(shí)際問(wèn)題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷32(新灣初中 薛源海)(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與,的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市文瀾中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年吉林省琿春市琿春四中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省泰州市泰興市濟(jì)川實(shí)驗(yàn)初中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與,的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線(xiàn)AB上,折痕交x軸于點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)的頂點(diǎn)為D,在直線(xiàn)BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn)為T(mén),Q為線(xiàn)段BT上一點(diǎn),直接寫(xiě)出|QA-QO|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案