(2010•嘉興)如圖,A、B、C是⊙O上的三點(diǎn),已知∠O=60°,則∠C=( )

A.20°
B.25°
C.30°
D.45°
【答案】分析:欲求∠C,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解.
解答:解:∵∠C和∠O是同弧所對(duì)的圓周角和圓心角;
∴∠C=∠O=30°;故選C.
點(diǎn)評(píng):此題主要考查的圓周角定理:同弧所對(duì)的圓周角是圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年4月福建省泉州市北師大泉州附中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(33)(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省茂名市化州市文樓中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•嘉興)如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案